123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- # import jieba
- # import numpy as np
- # import re
-
- # def get_word_vector(s1, s2):
- # """
- # :param s1: 句子1
- # :param s2: 句子2
- # :return: 返回句子的余弦相似度
- # """
- # # 分词
- # cut1 = jieba.cut(s1)
- # cut2 = jieba.cut(s2)
- # list_word1 = (','.join(cut1)).split(',')
- # list_word2 = (','.join(cut2)).split(',')
- # # 列出所有的词,取并集
- # key_word = list(set(list_word1 + list_word2))
- # # 给定形状和类型的用0填充的矩阵存储向量
- # word_vector1 = np.zeros(len(key_word))
- # word_vector2 = np.zeros(len(key_word))
- # # 计算词频
- # # 依次确定向量的每个位置的值
- # for i in range(len(key_word)):
- # # 遍历key_word中每个词在句子中的出现次数
- # for j in range(len(list_word1)):
- # if key_word[i] == list_word1[j]:
- # word_vector1[i] += 1
- # for k in range(len(list_word2)):
- # if key_word[i] == list_word2[k]:
- # word_vector2[i] += 1
- # # 输出向量
- # print(word_vector1)
- # print(word_vector2)
- # return word_vector1, word_vector2
- # def cos_dist(vec1,vec2):
- # """
- # :param vec1: 向量1
- # :param vec2: 向量2
- # :return: 返回两个向量的余弦相似度
- # """
- # dist1 = float(np.dot(vec1,vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2)))
- # return dist1
- # if __name__ == '__main__':
- # s1 = "允许空值"
- # s2 = "是否为空"
- # vec1, vec2 = get_word_vector(s1, s2)
- # dist1 = cos_dist(vec1, vec2)
- # print(dist1)
- from transformers import AutoTokenizer, TFAutoModel
- import tensorflow as tf
- import matplotlib.pyplot as plt
- # 加载模型
- model_name = "bert-base-uncased"
- tokenizer = AutoTokenizer.from_pretrained(model_name)
- model = TFAutoModel.from_pretrained(model_name,
- output_hidden_states=True) # Whether the model returns all hidden-states.
- # 输入测试句子
- utt = ['今天的月亮又大又圆', '月亮真的好漂亮啊', '今天去看电影吧', "爱情睡醒了,天琪抱着小贝进酒店", "侠客行风万里"]
- inputs = tokenizer(utt, return_tensors="tf", padding="max_length", truncation=True, max_length=64)
- outputs = model(inputs)
- hidden_states = outputs[2] # 获得各个隐藏层输出
- """
- 解释下输出(hidden_states):
- 1. The layer number (13 layers)
- 2. The batch number (5 sentence) 也就是输入句子的个数
- 3. The word / token number (64 tokens in our sentence) 也就是max_length
- 4. The hidden unit / feature number (768 features)
- 疑惑点:
- 1.为啥是13层?bert不是12层吗?
- 第一层是输入的嵌入层,其余12层才是bert的
- """
- print("Number of layers:", len(hidden_states), " (initial embeddings + 12 BERT layers)")
- layer_i = 0
- print("Number of batches:", len(hidden_states[layer_i]))
- batch_i = 0
- print("Number of tokens:", len(hidden_states[layer_i][batch_i]))
- token_i = 0
- print("Number of hidden units:", len(hidden_states[layer_i][batch_i][token_i]))
- # For the 5th token in our sentence, select its feature values from layer 5.
- token_i = 5
- layer_i = 5
- vec = hidden_states[layer_i][batch_i][token_i]
- # Plot the values as a histogram to show their distribution.
- plt.figure(figsize=(10, 10))
- plt.hist(vec, bins=200)
- plt.show()
- # Concatenate the tensors for all layers. We use `stack` here to
- # create a new dimension in the tensor.
- sentence_embeddings = tf.stack(hidden_states, axis=0) # 在维度0的位置插入,也就是把13放入最前面
- print(f"sentence_embeddings.shape : {sentence_embeddings.shape}")
- # 调换维度,使每个词都有13层的嵌入表示
- sentence_embeddings_perm = tf.transpose(sentence_embeddings, perm=[1, 2, 0, 3])
- print(f"sentence_embeddings_perm.shape : {sentence_embeddings_perm.shape}")
- # 获取词的稠密向量
- ## 第一种方式:拼接后四层的稠密向量
- for sentence_embedding in sentence_embeddings_perm: # 获取每个句子的embedding
- print(f"sentence_embedding.shape: {sentence_embedding.shape}")
- token_vecs_cat = []
- for token_embedding in sentence_embedding: # 获取句子每个词的embedding
- print(f"token_embedding.shape : {token_embedding.shape}")
- cat_vec = tf.concat([token_embedding[-1], token_embedding[-2], token_embedding[-3], token_embedding[-4]], axis=0)
- print(f"cat_vec.shape : {cat_vec.shape}")
- token_vecs_cat.append(cat_vec)
- print(f"len(token_vecs_cat) : {len(token_vecs_cat)}")
- ## 第二种方式:加和后四层的稠密向量
- for sentence_embedding in sentence_embeddings_perm: # 获取每个句子的embedding
- print(f"sentence_embedding.shape: {sentence_embedding.shape}")
- token_vecs_cat = []
- for token_embedding in sentence_embedding: # 获取句子每个词的embedding
- print(f"token_embedding.shape : {token_embedding.shape}")
- cat_vec = sum(token_embedding[-4:])
- print(f"cat_vec.shape : {cat_vec.shape}")
- token_vecs_cat.append(cat_vec)
- print(f"len(token_vecs_cat) : {len(token_vecs_cat)}")
- # 获取句子的稠密向量
- ## 平均每个token倒数第二层的稠密向量
- token_vecs = sentence_embeddings[-2]
- print(f"token_vecs.shape : {token_vecs.shape}")
- sentences_embedding = tf.reduce_mean(token_vecs, axis=1)
- print(f"sentences_embedding.shape : {sentences_embedding.shape}")
- # 计算余弦相似度
- ## 不同句子间的相似度
- tensor_test = sentences_embedding[0]
- consine_sim_tensor = tf.keras.losses.cosine_similarity(tensor_test, sentences_embedding)
- print(f"consine_sim_tensor : {consine_sim_tensor}")
- ##探讨下相同词bank在不同上下文时其vector的相似度
- utt = ["After stealing money from the bank vault, the bank robber was seen fishing on the Mississippi river bank."]
- inputs = tokenizer(utt, return_tensors="tf", padding="max_length", truncation=True, max_length=22)
- outputs = model(inputs)
- hidden_states = outputs[2] # 获得各个隐藏层输出
- tokens_embedding = tf.reduce_sum(hidden_states[-4:], axis=0) # 使用加和方式
- bank_vault = tokens_embedding[0][6]
- bank_robber = tokens_embedding[0][10]
- river_bank = tokens_embedding[0][19]
- consine_sim_tensor = tf.keras.losses.cosine_similarity(bank_vault, [bank_robber, river_bank])
- print(f"consine_sim_tensor : {consine_sim_tensor}")
- # consine_sim_tensor : [-0.93863535 -0.69570863]
- # 可以看出bank_vault(银行金库)和bank_robber(银行抢劫犯)中的bank相似度更高些,合理!
|