Explorar el Código

[feat]:完成10.2章节环境搭建

sangxin hace 3 años
padre
commit
789876b59e
Se han modificado 21 ficheros con 151 adiciones y 5 borrados
  1. 151 5
      docs/chapt10/10.2Gazebo仿真环境准备.md
  2. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415190947423.png
  3. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415191443344.png
  4. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415200625473.png
  5. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415200653000.png
  6. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415201033741.png
  7. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415203442641.png
  8. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415203452096.png
  9. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415203602181.png
  10. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415203658743.png
  11. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415203729210.png
  12. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415204008428.png
  13. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415204027598.png
  14. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415204212426.png
  15. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415205459283.png
  16. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415205713054.png
  17. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415205821811.png
  18. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415212035364.png
  19. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415212321161.png
  20. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415212856652.png
  21. BIN
      docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415212957807.png

+ 151 - 5
docs/chapt10/10.2Gazebo仿真环境准备.md

@@ -1,20 +1,166 @@
-10.2 Gazebo仿真环境准备
+# 10.2 Gazebo仿真环境准备
 
 上节,小鱼介绍了机器人的导航,其中我们知道导航三大组件通过传感器从环境中获取数据,接着又通过执行器作用于机器人以改变环境数据。
 
 所以在开始进行SLAM导航进行导航之前,我们要在Gazebo中建立一个测试的环境,其实也很简单,利用Gazebo的画墙工具即可完成。
 
-1.Gazebo的world介绍
+![image-20220415212856652](10.2Gazebo仿真环境准备/imgs/image-20220415212856652.png)
 
+## 1. Gazebo的world介绍
 
+world即世界,gazebo的world文件就是用于描述世界模型的,也就是环境模型。
 
-2.通过建墙工具建立world
+Gazebo已经为我们准备了很多常用的物体模型,除了基础的圆球,圆柱,立方体外的,其实还有飞机、汽车、房子等你现实中无法拥有的。
 
-3.启动时加载world
+但是一开始安装Gazebo的时候并不会帮你下载好这些模型,需要我们手动下载,万幸的是小鱼已经帮你封装成了一行代码下载指令,打开终端,复制粘贴下面这句
 
-4.总结
+```shell
+cd ~/.gazebo && wget https://gitee.com/ohhuo/scripts/raw/master/gazebo_model.py && python3 gazebo_model.py
+```
 
+然后等待脚本运行完成,当然也不用等它完成,因为一共有281个模型,是逐一下载并解压到`~/.gazebo/models/`目录的。
 
+此时再次打开终端,输入`gazebo`,把选项卡切换到Insert
+
+![image-20220415190947423](10.2Gazebo仿真环境准备/imgs/image-20220415190947423.png)
+
+在Insert选项卡下可以看到一个目录,以及目录下的模型名称,随着下载脚本的不断下载,这里的模型会越来越多。
+
+随手拖几个,搭建一个漂亮的环境出来~
+
+每个成功的男人都有一辆车,小鱼也不例外
+
+![image-20220415191443344](10.2Gazebo仿真环境准备/imgs/image-20220415191443344.png)
+
+上面是Gazebo为我们准备好的开源模型,我们也可以通过Gazebo的工具来自己画一个环境。
+
+## 2. 通过建墙工具建立world
+
+Gazebo左上角->Edit->Building Editor
+
+接着可以看到这样一个编辑界面
+
+![image-20220415200653000](10.2Gazebo仿真环境准备/imgs/image-20220415200653000.png)
+
+### 2.1 随手画墙
+
+点击左边的Wall,你就可以在上方的白色区域进行建墙了。
+
+![image-20220415201033741](10.2Gazebo仿真环境准备/imgs/image-20220415201033741.png)
+
+建完后还可以用选Add Color或者Add Texture,然后点击下方墙,给墙添加颜色或者纹理。
+
+### 2.2 从已有地图画墙
+
+首先你要有一个地图,小鱼为你准备了两个,两个图片都是800*600像素的。
+
+![image-20220415203442641](10.2Gazebo仿真环境准备/imgs/image-20220415203442641.png)
+
+![image-20220415203452096](10.2Gazebo仿真环境准备/imgs/image-20220415203452096.png)
+
+打开Gazebo->Gazebo左上角->Edit->Building Editor->左下方选Import
+
+![image-20220415203602181](10.2Gazebo仿真环境准备/imgs/image-20220415203602181.png)
+
+将上面两个图片存到本地,在这个界面选图片,记着选Next
+
+![image-20220415203658743](10.2Gazebo仿真环境准备/imgs/image-20220415203658743.png)
+
+左边选尺寸对应关系
+
+![image-20220415203729210](10.2Gazebo仿真环境准备/imgs/image-20220415203729210.png)
+
+我们选择默认的,100像素/米。点击OK(需要手动将100改变一下才能点击OK哦),之后就可以用图片画墙了。
+
+![image-20220415204027598](10.2Gazebo仿真环境准备/imgs/image-20220415204027598.png)
+
+建完后点击File->Exit,在退出的弹框中选Exit。
+
+接着在Gazebo界面中就可以看到墙了,我们再手动添加几个物体,就可以用于下面的导航使用了。
+
+![image-20220415205459283](10.2Gazebo仿真环境准备/imgs/image-20220415205459283.png)
+
+添加完,接着点击File->SaveWorld,将文件保存到我们的fishbot_descrption的world下。
+
+> 没有world目录的小伙伴可以先手动创建下
+
+![image-20220415205713054](10.2Gazebo仿真环境准备/imgs/image-20220415205713054.png)
+
+点击右上角Sace,在文件夹就可以看到这个world文件
+
+![image-20220415205821811](10.2Gazebo仿真环境准备/imgs/image-20220415205821811.png)
+
+## 3.启动时加载world
+
+### 3.1 命令行加载World
+
+加载world其实也很简单,可以先启动Gazebo,再手动的加载文件,也可以在Gazebo启动时加载:
+
+比如在前面加载ROS2插件基础上再加载fishbot.world。
+
+```
+gazebo --verbose -s  libgazebo_ros_factory.so  你的world文件目录/fishbot.world
+```
+
+### 3.2 在launch中加载World
+
+修改launch文件,将上面的命令行写到`gazebo.launch.py`中即可。
+
+```python
+    gazebo_world_path = os.path.join(pkg_share, 'world/fishbot.world')
+
+    # Start Gazebo server
+    start_gazebo_cmd = ExecuteProcess(
+        cmd=['gazebo', '--verbose', '-s', 'libgazebo_ros_factory.so', gazebo_world_path],
+        output='screen')
+```
+
+最后记得修改setup.py文件,让编译后将world文件拷贝到install目录下
+
+添加一行
+
+```
+        (os.path.join('share', package_name, 'world'), glob('world/**')),
+```
+
+添加完后
+
+```
+    data_files=[
+        ('share/ament_index/resource_index/packages',
+            ['resource/' + package_name]),
+        ('share/' + package_name, ['package.xml']),
+        (os.path.join('share', package_name, 'launch'), glob('launch/*.launch.py')),
+        (os.path.join('share', package_name, 'urdf'), glob('urdf/**')),
+        (os.path.join('share', package_name, 'world'), glob('world/**')),
+    ],
+```
+
+### 3.3 编译测试
+
+```
+colcon build
+source install/setup.bash
+ros2 launch fishbot_description gazebo.launch.py 
+```
+
+![image-20220415212035364](10.2Gazebo仿真环境准备/imgs/image-20220415212035364.png)
+
+打开RVIZ2看看雷达
+
+![image-20220415212321161](10.2Gazebo仿真环境准备/imgs/image-20220415212321161.png)
+
+## 4.总结
+
+本节我们实现了在Gazebo中简单的搭建了一个环境,下节我们就开始对SLAM建图进行介绍。
+
+课后作业:
+
+- 将雷达的Decay Time修改成1000,然后遥控Fishbot在环境中走一圈,然后观察雷达留下的点云形状。
+
+正确答案如下(小鱼的环境):
+
+![image-20220415212957807](10.2Gazebo仿真环境准备/imgs/image-20220415212957807.png)
 
 --------------
 

BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415190947423.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415191443344.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415200625473.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415200653000.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415201033741.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415203442641.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415203452096.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415203602181.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415203658743.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415203729210.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415204008428.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415204027598.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415204212426.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415205459283.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415205713054.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415205821811.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415212035364.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415212321161.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415212856652.png


BIN
docs/chapt10/10.2Gazebo仿真环境准备/imgs/image-20220415212957807.png