
Exploring the Performance of ROS2

Yuya Maruyama
Graduate School of

Engineering Science
Osaka University

Shinpei Kato
Graduate School of

Information Science and
Technology

The University of Tokyo

Takuya Azumi
Graduate School of

Engineering Science
Osaka University

ABSTRACT
Middleware for robotics development must meet demand-
ing requirements in real-time distributed embedded systems.
The Robot Operating System (ROS), open-source middle-
ware, has been widely used for robotics applications. How-
ever, the ROS is not suitable for real-time embedded sys-
tems because it does not satisfy real-time requirements and
only runs on a few OSs. To address this problem, ROS1
will undergo a significant upgrade to ROS2 by utilizing the
Data Distribution Service (DDS). DDS is suitable for real-
time distributed embedded systems due to its various trans-
port configurations (e.g., deadline and fault-tolerance) and
scalability. ROS2 must convert data for DDS and abstract
DDS from its users; however, this incurs additional over-
head, which is examined in this study. Transport latencies
between ROS2 nodes vary depending on the use cases, data
size, configurations, and DDS vendors. We conduct proof of
concept for DDS approach to ROS and arrange DDS char-
acteristic and guidelines from various evaluations. By high-
lighting the DDS capabilities, we explore and evaluate the
potential and constraints of DDS and ROS2.

Keywords
robot operating system; data distribution service; quality of
service; real-time; embedded; publish/subscribe

1. INTRODUCTION
In recent years, real-time distributed embedded systems,

such as autonomous driving vehicles, have become increas-
ingly complicated and diverse. Autonomous driving has at-
tracted attention since the November 3, 2007 DARPA Urban
Challenge [34]. The Robot Operating System (ROS) [28] is
open-source middleware that has undergone rapid develop-
ment [11] and has been widely used for robotics applications
(e.g., autonomous driving systems). The ROS is built almost
entirely from scratch and has been maintained by Willow
Garage [7] and Open Source Robotics Foundation (OSRF)
[2] since 2007. The ROS enhances productivity [12], pro-
viding publish/subscribe transport, multiple libraries (e.g.,

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor or affiliate of a national government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to al-
low others to do so, for Government purposes only.

EMSOFT’16, October 01-07, 2016, Pittsburgh, PA, USA
c© 2016 ACM. ISBN 978-1-4503-4485-2/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2968478.2968502

OpenCV and the Point Cloud Library (PCL) [3]), and tools
to help software developers create robotics applications.

However, the ROS does not satisfy real-time run require-
ments and only runs on a few OSs. In addition, the ROS
cannot guarantee fault-tolerance, deadlines, or process syn-
chronization. Moreover, the ROS requires significant re-
sources (e.g, CPU, memory, network bandwidth, threads,
and cores) and can not manage these resources to meet time
constraints. Thus, the ROS is not suitable for real-time em-
bedded systems. This critical problem has been considered
by many research communities, including ROS developers,
and various solutions have been proposed and evaluated [13],
[19], [36]. However, these solutions are insufficient1 to ad-
dress the ROS’s limitations for real-time embedded systems.

To satisfy the needs of the now-broader ROS community,
the ROS will undergo a significant upgrade to ROS2 [23].
ROS2 will consider the following new use cases: real-time
systems, small embedded platforms (e.g., sensor nodes), non-
ideal networks, and cross-platform (e.g., Linux, Windows,
Mac, Real-Time OS (RTOS), and no OS). To satisfy the
requirements of these new use cases, the existing version
of ROS (hereinafter ROS1) will be reconstructed to im-
prove user-interface APIs and incorporate new technologies,
such as Data Distribution Service (DDS) [24], [30], Zero-
conf, Protocol Buffers, ZeroMQ, Redis, and WebSockets.2

The ROS1 transport system will be replaced by DDS, an
industry-standard real-time communication system and end-
to-end middleware. The DDS can provide reliable pub-
lish/subscribe transport similar to that of ROS1.

DDS is suitable for real-time embedded systems because of
its various transport configurations (e.g., deadline, reliabil-
ity, and durability) and scalability. DDS meets the require-
ments of distributed systems for safety, resilience, scalability,
fault-tolerance and security. DDS can provide solutions for
some real-time environments and some small/embedded sys-
tems by reducing library sizes and memory footprints. De-
veloped by different DDS vendors, several implementations
of this communication system have been used in mission-
critical environments (e.g., trains, aircrafts, ships, dams, and
financial systems) and have been verified by NASA and the
United States Department of Defense. Several DDS imple-
mentations have been evaluated and validated by researchers
[37], [32] and DDS vendors. These evaluations indicate that
DDS is both reliable and flexible.

Contribution: In this paper, we provide proof of concept

1Reasons why prior work is insufficient are discussed in Sec-
tion 4.
2Currently ROS2 only supports some DDS implementations.

Figure 1: ROS1/ROS2 architecture.

for DDS approach to ROS. We clarify the performance of the
data transport for ROS1 and ROS2 in various situations.
Performance means latency characteristics, throughput and
distributed capability. Focusing on the DDS capabilities, de-
pending on DDS vendors and configurations, we explore and
evaluate the potential and constraints from various aspects:
latencies, throughput, the number of threads, and memory
consumption. From experimental results, we arrange guide-
lines and what we can do to solve current constrains. To
the best of our knowledge, this is the first study to explore
ROS2 performance.
Organization: The remainder of this paper is organized

as follows. Section 2 provides background information and
describes the ROS and DDS system models. Section 3 vali-
dates experimental situations and evaluates the performance
of ROS1 and ROS2 with various configurations. Section 4
discusses related work. Finally, Section 5 concludes the pa-
per and offers suggestions for future work.

2. BACKGROUND
In this section, we provide background knowledge. First,

we describe the ROS2 system model compared to ROS1,
focusing on its communication system. We then review as-
pects of the ROS, such as the publish/subscribe model. Fi-
nally, we describe DDS, which is used as the communication
system for real-time systems in ROS2.

2.1 Robot Operating System (ROS)
Figure 1 briefly illustrates the system models of ROS1 and

ROS2. In the left side of Figure 1, ROS1’s implementation
includes the communication system, TCPROS/UDPROS.
This communication requires a master process (unique in
the distributed system) because of the implementation of
ROS1. In contrast, as shown in the right side of Figure
1, ROS2 builds upon DDS and contains a DDS abstraction
layer. Users do not need to be aware of the DDS APIs due to
this abstraction layer. This layer allows ROS2 to have high-
level configurations and optimizes the utilization of DDS. In
addition, due to use of DDS, ROS2 does not need a master
process. This is a import point in terms of fault tolerance.
ROS applications consist of independent computing pro-

cesses called nodes, which promote fault isolation, faster de-
velopment, modularity, and code reusability. Communica-
tion among nodes is based on a publish/subscribe model.
In this model, nodes communicate by passing messages via
a topic. A message has a simple data structure (much like
C structs) defined by .msg files. Nodes identify the content
of the message by the topic name. As a node publishes a
message to a topic, another node subscribes to the topic
and utilizes the message. For example, as shown in Fig-
ure 2, the “Camera” node sends messages to the “Images”

Figure 2: Example of ROS publish/subscribe model.

topic. The messages in the topic are received by the “Car
Detection”node and “Pedestrian Detection”node. The pub-
lish/subscribe model is designed to be modular at a fine-
grained scale and is suitable for distributed systems.

In ROS1, the above communication system is implemented
as middleware based on TCPROS and UDPROS using TCP
and UDP sockets. When subscriber-nodes and publisher-
nodes are launched, they interact with a master-node that
collects information and manages topics, similar to a server.
After an XML/Remote Procedure Call (RPC) transaction
with the master-node, subscriber-nodes request a connection
to publisher-nodes, using an agreed upon connection proto-
col. Actual data (i.e., a message) is transported directly
between nodes. This data does not route through the mas-
ter. ROS1 realizes a peer-to-peer data transport between
nodes.

Optionally, ROS1 provides nodelets, which provide effi-
cient node composition for optimized data transport without
TCPROS and UDPROS. A nodelet realizes non-serialized
data transport between nodes in the same process by pass-
ing a pointer. ROS2 inherits this option as intra-process
communication, which addresses some of the fundamental
problems with nodelets (e.g., safe memory access).

ROS2 adopts DDS as its communication system. How-
ever, as an exception, intra-process communication is exe-
cuted without DDS. DDS is provided by many vendors and
has several implementation types. Developers can select an
appropriate DDS implementation from a variety of DDS ven-
dors.

2.2 Data Distribution Service (DDS)
The DDS specification [21] is defined for a publish/subscribe

data-distribution system by the Object Management Group
(OMG) [1]. The OMG manages the definitions and stan-
dardized APIs; however the OMG hides the details of im-
plementation. Several implementations have been developed
by different vendors (e.g., RTI [29] and PRISMTECH [25]).
DDS supports a wide range of applications, from small em-
bedded systems to large scale systems, such as infrastruc-
tures. Note that distributed real-time embedded systems
are also supported.

The core of DDS is a Data-Centric Publish-Subscribe (DCPS)
model designed to provide efficient data transport between
processes even in distributed heterogeneous platforms. The
DCPS model creates a “global data space” that can be ac-
cessed by any independent applications. DCPS facilitates
efficient data distribution. In DDS, each process that pub-
lishes or subscribes to data is called a participant, which cor-
responds to a node in the ROS. Participants can read and
write from/to the global data space using a typed interface.

As shown in Figure 3, the DCPS model is constructed of
DCPS Entities: DomainParticipant, Publisher, Subscriber,

Figure 3: Data-centric publish-subscribe (DCPS)
model.

DataWriter, DataReader, and Topic. Each data transport
between processes is executed according to a Quality of Ser-
vice (QoS) Policy.
DomainParticipant: A DomainParticipant is a container
for following other entities and the entry-point for the ser-
vice. In DDS, all applications communicate with each other
within a Domain, which promotes isolation and communi-
cation optimization.
Publisher : A Publisher is the object responsible for data is-
suance. Managing one or several DataWriters, the Publisher
sends data to one or more Topics.
Subscriber : A Subscriber is responsible for receiving pub-
lished data and making the data available. The Subscriber
acts on behalf of one or more DataReaders. According to
a Subscriber, a DomainParticipant can receive and dispatch
data of different specified types.
DataWriter : A DataWriter is an object that must be used
by a DomainParticipant to publish data through a Pub-
lisher. The DataWriter publishes data of a given type.
DataReader : A DataReader is an object that is attached to
a Subscriber. Using the DataReader, a DomainParticipant
can receive and access data whose type must correspond to
that of the DataWriter.
Topic: A Topic is used to identify each data-object between
a DataWriter and a DataReader. Each Topic is defined by
a name and a data type.
QoS Policy : All DCPS Entities have a QoS Policy, which
represents their data transport behavior. Each data transac-
tion is configurable at various levels of granularity via many
QoS Policy options. In Figure 4, we show an example of
DDS data transport following a QoS Policy. The deadline
period, depth of history, and communication reliability are
configured by a QoS Policy. Table 1 shows the details of the
QoS Policy supported by ROS2. In DDS, there are many
other QoS Policies [21], which ROS2 should support to ex-
tend its capabilities.
In the DCPS model, data of a given type is published

from one or several DataWriters to a topic (its name is
unique in the Domain). One or more DataReaders iden-
tify a data-object by topic name in order to subscribe to
the topic. After this transaction, a DataWriter connects
to a DataReader using the Real-Time Publish/Subscribe
(RTPS) protocol [20] in distributed systems. The RTPS pro-
tocol, the DDS standard protocol, allows DDS implementa-
tions from multiple vendors to inter-operate by abstracting
and optimizing transport, such as TCP/UDP/IP. The RTPS

Figure 4: DDS QoS Policy.

Table 1: All QoS Policies of ROS2
DEADLINE A DataWriter and a DataReader must update

data at least once every deadline period.
HISTORY This controls whether the data transport should

deliver only the most recent value, attempt to
deliver all intermediate values, or attempt to de-
liver something in between (configurable via the
depth option).

RELIABILITY In BEST_EFFORT, data transport is executed as
soon as possible. However, some data may be
lost if the network is not robust.
In RELIABLE, missed samples are retransmitted.
Therefore, data delivery is guaranteed.

DURABILITY With this policy, the service attempts to keep
several samples so that they can be delivered
to any potential late-joining DataReader. The
number of saved samples depends on HISTORY.
This option has several values, such as VOLATILE
and TRANSIENT_LOCAL.

protocol is flexible and is defined to take advantage of a QoS
Policy. Several vendors use UDP and shared memory trans-
port to communicate. However, in several circumstances,
the TCP protocol might be required for discovery and data
exchange.

Data transport between a DataWriter and a DataReader
is executed in the RTPS protocol according to a QoS Pol-
icy. Each DCPS Entity manages data samples according to
a unique user-specified QoS Policy. The DCPS middleware
is responsible for data transport in distributed systems based
on the QoS Policy. Without considering detailed transport
implementations, DDS users generate code as a DomainPar-
ticipant, including QoS Policies using the DDS APIs. Thus,
users can focus solely on their purpose and determine ways
to satisfy real-time constraints easily.

3. EVALUATIONS
This section clarifies the capabilities and latency charac-

teristics of ROS1 and ROS2. At present, ROS2 has been re-
leased as an alpha version whose major features are a C++
client library, a build-system and abstraction to a part of the
DDS middleware from several vendors. Note that ROS2 is a
very rough draft and is currently under heavy development.
Therefore, this evaluation attempts to clarify the currently
achievable capabilities and latency characteristics of ROS2.

The following experiments were conducted to evaluate
end-to-end latencies for publish/subscribe messaging. The
latencies are measured from a publish function on a single
node until the callback function of another node using the
hardware and software environment listed in Table 2. The

Table 2: Evaluation Environment
Machine1 Machine2

CPU

Model number Intel Core i5 3470 Intel Core i5 2320
Frequency 3.2 GHz 3.00 GHz

Cores 4 4
Threads 4 4

Memory 16 GB 8 GB
Network 100 Mbps Ethernet / Full-Duplex
ROS1 Indigo
ROS2 Cement (alpha3)

DDS implementations Connext1/ OpenSplice2/ FastRTPS

OS
Distribution Ubuntu 14.04

Kernel Linux 3.13.0
1 RTI Connext DDS Professional [29]
2 OpenSplice DDS Community Edition [25]

Table 3: QoS Policies for Evaluations
reliable policy best-effort policy

DEADLINE 100 ms 100 ms

HISTORY ALL LAST

depth - 1

RELIABILITY RELIABLE BEST_EFFORT

DURABILITY TRANSIENT_LOCAL VOLATILE

range of the transferred data size is 256 B to 4 MB be-
cause large image data (e.g., 2 MB) and point cloud data
(.pcd) are frequently used in ROS applications, such as an
autonomous driving system [18]. A string type message
is used for this evaluation. In the following experiments,
we use two QoS settings, i.e., reliable policy and best-

effort policy, as shown in Table 3. In the reliable pol-

icy, TRANSIENT_LOCAL allows a node to keep allmessages for
late-joining subscriber-nodes, and RELIABLE facilitates reli-
able communication. In the best-effort policy, nodes do
not keep messages and communicate unreliably. While each
node is executed at 10 Hz, the experiments are repeated
up to 4 MB. Boxplots and the medians obtained from 100
measurements for each data size are presented. For precise
evaluation methods, we make the source code open in [5]
and [6]. We compare three DDS implementations, i.e., Con-
next [29], OpenSplice [25], and FastRTPS [14]. Connext and
OpenSplice are well-known commercial license DDS imple-
mentations. Note that Connext also has a research license.
Several implementations of OpenSplice and FastRTPS have
been released under the LGPL license. By default, Con-
next uses UDPv4 and shared memory to exchange data.
Note that OpenSplice3 and FastRTPS do not support shared
memory data transport. For precise evaluations and real-
time requirements, nodes follow SCHED FIFO [15] and the
mlockall system call. A SCHED FIFO process preempts any
non-SCHED FIFO processes, i.e., processes that use the de-
fault Linux scheduling. Using mlockall, a process’s virtual
address space is fixed in physical RAM, thereby preventing
that memory from being paged to the swap area.

3.1 Experimental Situations and Methods
As shown in Figure 5, various communication situations

between nodes in ROS1 and/or ROS2 are evaluated in the
following experiments. Whereas ROS1 is used in (1-a), (1-
b), and (1-c), ROS2 is used in (2-a), (2-b), and (2-c). In (3-

3Vortex OpenSplice [26], i.e., OpenSplice commercial edi-
tion, supports shared memory transport, but ROS2 does
not support Vortex OpenSplice. In this paper, OpenSplice
DDS Community Edition is used because it is open-source.

Figure 5: Experimental situations.

Figure 6: ros_bridge evaluation in (3-a) and (3-b).

a) and (3-b), ROS1 and ROS2 nodes coexist. Note that the
case of (2-c) does not require DDS due to intra-process com-
munication, i.e., shared memory transport. Shared memory
transport is used in the (1-c) nodelet and (2-c) intra-process
cases. In the experiments, Machine1 is only used in (1-b),
(1-c), (2-b), (2-c), and (3-b). End-to-end latencies are mea-
sured on the same machine by sending messages between
nodes. Messages pass over a local loopback in local cases,
i.e., (1-b), (2-b), and (3-b). Otherwise, for communication
across the network, Machine1 and Machine2 are used in re-

mote cases, i.e., (1-a), (2-a), and (3-a). They are connected
by a local IP network without any other network.

Communication between ROS1 and ROS2 nodes requires
a ros_bridge [33], a bridge-node that converts topics for
DDS. The ros_bridge program has been released by the
Open Source Robotics Foundation (OSRF) [2]. A ros_bridge

dynamically marshals several topics for nodes in ROS2. Thus,
in (3-a) and (3-b), a ros_bridge is launched on which ROS2
nodes run. Figure 6 shows the node-graph for evaluation
of communication from ROS1 to ROS2. Note that a best-

effort policy is the only one used when using a ros_bridge
because a ros_bridge does not support the RELIABLE policy
in the QoS Policy.

3.2 Capabilities of ROS1 and ROS2
Table 4 shows whether end-to-end latencies can be mea-

sured for each data size with a comment about the causal
factors of the experimental results. Table 4 summarizes
ROS2’s capabilities, and several interesting observations can
be made. In the “Initial loss” column, ROS1 fails to ob-
tain initial messages when a node sends messages for the
first time even though ROS1 uses TCPROS with small data
such as 256 B and a subscriber-node is launched before a
publisher-node begins to send messages. Although TCPROS
is reliable for delivering intermediate messages, it does not

Table 4: Capabilities of ROS1 and/or ROS2 for each Data Transport
Initial loss 256 [byte] 512 1K · · · ∗ 64K 128K 256K 512K 1M 2M 4M

ROS1
(1-a) remote any � � � · · · � � � � � �1 �1

(1-b) local any � � � · · · � � � � � �
(1-c) nodelet none � � � · · · � � � � � � �

ROS2

(2-a) remote

Connext
reliable none � � � · · · � �2 �2 �2 �2 �2 �2

best-effort none � � � · · · � � � � � �1 �1

OpenSplice
reliable none � � � · · · � � � � � � �

best-effort none � � � · · · � � � � � �1 �1

FastRTPS none �3 �3 �3 · · · �3 �3 �3 �3 �3 �3 �3

(2-b) local

Connext
reliable none � � � · · · � �2 �2 �2 �2 �2 �2

best-effort none � � � · · · � � � � � �2 �1

OpenSplice
reliable none � � � · · · � � � � � � �

best-effort none � � � · · · � � � � � �2 �2

FastRTPS none �3 �3 �3 · · · �3 �3 �3 �3 �3 �3 �3

(2-c) intra-process none � � � · · · � � � � � � �

ROS1 to 2
(3-a) remote

Connext any � � � · · · � � � � � �1 �1

OpenSplice any � � � · · · � � � � � �1 �1

(3-b) local
Connext any � � � · · · � � � � � �1 �1

OpenSplice any � � � · · · � � � � � � �

ROS2 to 1
(3-a) remote

Connext any � � � · · · � � � � � �1 �1

OpenSplice any � � � · · · � � �1 �1 �1 �1 �1

(3-b) local
Connext any � � � · · · � � � � � �1 �1

OpenSplice any � � � · · · � � �1 �1 �1 �1 �1

∗: same behavior as 1 and 64 KB; �: data transport possible; �1: possible but missing the deadline; �2: data loss possible;
�1: impossible due to a halt of process or too much data loss;
�2: impossible with an error message (deficiency of additional configurations for large data);
�3: impossible with an error message (unsupported large data for the DDS implementation)

support reliable transport of initial messages. This influ-
ences ROS2 when using a ros_bridge. In contrast, ROS2
does not lose initial messages, even when using large data
such as 4 MB. This proves the reliability of DDS. In best-

effort policy, a subscriber-node must be launched before
a publisher-node begins to send messages for no “Initial
loss”. On the other hand, with ROS2 reliable policy,
a subscriber-node does not have to be launched before a
publisher-node starts sending messages. This is attributed
to TRANSIENT_LOCAL in DURABILITY of the QoS Policy.
The reliable policy is tuned to provide resilience against
late-joining subscriber-nodes. In ROS1, published messages
are lost and never recovered. This QoS Policy accelerates
fault-tolerance.
Another interesting observation from Table 4 is that ROS2

has many problems when transporting large data. Many
experiments fail in various situations with ROS2; however,
we can observe differences in performance between Connext
and OpenSplice. These constraints on large data originate
from the fact that the maximum payload of Connext and
OpenSplice is 64 KB. This is the maximum packet size of IP
protocol. It is hard to maintain divided packets with QoS
Policy by default API. Therefore, we consider that DDS
is not designed to handle large data. This is important
for the analysis of ROS2 performance. For example, Fas-
tRTPS does not support large data because it is designed as
a lightweight implementation for embedded systems. Even a
string of 256 B exceeds the maximum length in FastRTPS.
Many DDS vendors do not support publishing large data
with reliable connections and common APIs. To send and
manage divided packets, such DDS vendors provide an al-
ternate API such as an asynchronous publisher and flow
controller, which has not been abstracted from ROS2. In
our experiments, Connext with reliable policy yields er-
rors when data are greater than 64 KB. Some failures with
the best-effort policy are due to frequent message losses
caused by non-reliable communication. When a publisher-
node fails to transfer data to a subscriber-node frequently,

we cannot collect sufficient samples and conduct evaluations.
Several evaluations fail in (3-b) and remote cases, as shown
in Table 4. Currently, the above results indicate that ROS2
is not suitable for handling large messages.

3.3 Latency Characteristics of ROS1 and ROS2
As shown in Figures 7, 8, 9, 10, a tendency of end-to-end

latencies characteristics is clarified in each situation shown
in Figure 5. In (2-a) and (2-b), ROS2 uses OpenSplice with
the reliable policy because ROS1 uses TCPROS, i.e., re-
liable communication. In (3-a) and (3-b), to evaluate la-
tencies with large data (e.g., 512 KB and 1 MB), Connext
with the best-effort policy is used. First, we analyze
ROS2 performance compared to ROS1. We then evaluate
ROS2 with different DDS implementations and configura-
tions, such as the QoS Policy.

3.3.1 Comparison between remote and local cases
ROS1 and ROS2 is much less than the difference between

remote and local cases. Figures 7 and 8 show the medians
of the latencies for the remote and local cases. Since the
conversion influences from ROS1 to ROS2 and from ROS2
to ROS1 are similar, Figures 7 and 8 contain one-way data.
In Figure 7, the behavior of all latencies is constant up to
4 KB. In contrast, the latencies in the remote cases grow
sharply from 16 KB, as shown in Figures 7 and 8. This
is because ROS1 and ROS2 divide a message into 15 KB
packets to transmit data through Ethernet. This difference
between the remote and local cases corresponds to the data
transmission time between Machine1 and Machine2, which
was measured in a preliminary experiment. The prelimi-
nary experiment measured transmission time for each data
size using ftp or http. This correspondence indicates that
the RTPS protocol and data about the QoS Policy have lit-
tle influence on data transmission time in the network. In
addition, all latencies are predictable by measuring the data
transmission time.

3.3.2 Comparison among local, nodelet, and intra-
process cases

0
2

4
6

8
0

2
4

6
8

Data Size [byte]

La
te

nc
y

[m
s]

0
2

4
6

8
0

2
4

6
8

0
2

4
6

8
0

2
4

6
8

256 512 1K 2K 4K 8K 16K 32K 64K

(1−a) ROS1 remote
(1−b) ROS1 local
(2−a) ROS2 remote [OpenSplice reliable]
(2−b) ROS2 local [OpenSplice reliable]
(3−a) ROS1 to ROS2 remote [Connext best−effort]
(3−b) ROS1 to ROS2 local [Connext best−effort]

Figure 7: Medians of end-to-end
latencies with small data in remote

and local cases.

0.
0

0.
5

1.
0

1.
5

Data Size [byte]

La
te

nc
y

[m
s]

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

256 512 1K 2K 4K 8K 16K 32K 64K

(1−c) ROS1 nodelet
(1−b) ROS1 local
(2−c) ROS2 intra
(2−b) ROS2 local [OpenSplice reliable]
(3−b) ROS1 to ROS2 local [Connext best−effort]

Figure 9: Medians of end-to-end
latencies with small data in local,
nodelet, and intra-process cases.

16K 32K 64K 128K 256K 512K 1M 2M 4M
Data Size [byte]

La
te

nc
y

[m
s]

0
2

4
6

8
10

12

DDS
convert: DDS to ROS2
convert: ROS2 to DDS
others
(1−b) ROS1 local

Figure 11: (2-b) reliable policy

breakdown of ROS2 latencies with
the OpenSplice.

0
20

40
60

80
10

0

Data Size [byte]

La
te

nc
y

[m
s]

0
20

40
60

80
10

0
0

20
40

60
80

10
0

0
20

40
60

80
10

0
0

20
40

60
80

10
0

0
20

40
60

80
10

0

64K 128K 256K 512K 1M

(1−a) ROS1 remote
(1−b) ROS1 local
(2−a) ROS2 remote [OpenSplice reliable]
(2−b) ROS2 local [OpenSplice reliable]
(3−a) ROS1 to ROS2 remote [Connext best−effort]
(3−b) ROS1 to ROS2 local [Connext best−effort]

Figure 8: Medians of end-to-end
latencies with large data in remote

and local cases.

0
2

4
6

8
10

Data Size [byte]

La
te

nc
y

[m
s]

0
2

4
6

8
10

0
2

4
6

8
10

0
2

4
6

8
10

64K 128K 256K 512K 1M 2M 4M

(1−c) ROS1 nodelet
(1−b) ROS1 local
(2−c) ROS2 intra
(2−b) ROS2 local [OpenSplice reliable]
(3−b) ROS1 to ROS2 local [Connext best−effort]

Figure 10: Medians of end-to-end
latencies with large data in local,
nodelet, and intra-process cases.

16K 32K 64K 128K 256K 512K 1M 2M 4M
Data Size [byte]

La
te

nc
y

[m
s]

0
2

4
6

8
10

12

DDS
convert: DDS to ROS2
convert: ROS2 to DDS
others
(1−b) ROS1 local

Figure 12: (2-b) best-effort policy

breakdown of ROS2 latencies with
the OpenSplice.

The latenciy characteristics differ in the cases of small and
large data. For discussion, we divide the graph into Figures 9
and 10, which show the medians of the end-to-end latencies
for local loopback and shared memory transport. This is
because whether a message is divided into several packets
or not is an import issue to consider end-to-end latencies.
For data size less than 64 KB, a constant overhead with

ROS2 is observed, as shown in Figure 9, because DDS re-
quires marshaling various configurations and decisions for
the QoS Policy. We observe a trade-off between latencies
and the QoS Policy regardless of data size. Although the
QoS Policy produces inevitable overhead, the latencies are
predictable and small. (3-b) has significant overhead due to
the ros_bridge transaction. In the (3-b) case, a ros_bridge
incurs more overhead to communicate with ROS1 and ROS2.
With large data, ROS2 has significant overhead depend-

ing on the size of data, as shown in Figure 10. The over-
head of ROS2 in (2-b) is attributed to two factors, i.e., data
conversion for DDS and processing DDS. Note that ROS2
in (2-a) and (2-b) must convert messages between ROS2
and DDS twice. One conversion is from ROS2 to DDS, and
the other conversion is from DDS to ROS2. Between these
conversions, ROS2 calls DDS APIs and passes messages to
DDS. Figures 11 and 12 show a breakdown of the end-to-
end latencies in the (2-b) OpenSplice reliable policy and
best-effort policy. We observe that ROS2 requires only
conversions and processing of DDS. As shown in Figures 11
and 12, there are nearly no transactions for “others”. In ad-
dition, note that data size influences both conversions and
the DDS processing. Compared to ROS1, the DDS overhead
is not constant, and the impact of DDS is notable with large
data. As a result, ROS2 has significant overhead with large
data, while the impact of DDS depends on the QoS Policy.
Furthermore, the influence of shared memory with large

data is observed in Figure 10. As data becomes large, no-

table differences can be observed. However, the influence
appears small in Figure 9 because small data hides the im-
pact of shared memory.

Another interesting observation is that the latencies in the
(2-c) intra-process are greater than the latencies in (1-b) de-
spite using shared memory. This result is not due to conver-
sions for DDS and processing of DDS, because intra-process
communication does not route through DDS. As ROS2 is in
development, that gaps will be closed. Intra-process com-
munication needs to be improved.

3.3.3 Comparison within ROS2
End-to-end latencies with data less than 16 KB exhibit

similar performance in (2-b). We discuss performance for
data of 16 KB to 4 MB.

A comparison of different DDS implementations in (2-b) is
shown in Figure 13. We evaluate OpenSplice and Connext
with and without shared memory in (2-b) with the best-

effort policy. Despite shared memory, the performance
is not significantly better than that of local loopback. This
is caused by marshaling of various tools (e.g., logger and ob-
server), even when using shared memory transport. More-
over, OpenSplice is superior to Connext in terms of latency,
as shown in Figure 13, because we use Connext DDS Profes-
sional, which has much richer features than the OpenSplice
DDS Community Edition. We assume that the performance
of Vortex OpenSplice is similar to that of OpenSplice DDS
Community Edition. However, Vortex OpenSplice needs a
commercial license and is not supported by ROS2.

In addition, the influence of the QoS Policy on end-to-end
latencies is evaluated in (2-b) OpenSplice with the reli-

able policy, best-effort policy, and *-depth policy.
*-depth policy is prepared for this evaluation and con-
figured by depth as shown in Table 5. Figure 14 shows
differences in latencies depending on the reliable policy

0
2

4
6

8
10

12

Data Size [byte]

La
te

nc
y

[m
s]

Connext: local loopback
Connext: shared memory
OpenSplice: local loopback

16K 32K 64K 128K 256K 512K 1M 2M 4M

Figure 13: (2-b) Different DDS in
ROS2 with best-effort policy.

0
2

4
6

8
10

12

Data Size [byte]

La
te

nc
y

[m
s]

best−effort policy
reliable policy

16K 32K 64K 128K 256K 512K 1M 2M 4M

Figure 14: (2-b) Two QoS policies
in ROS2 with OpenSplice.

0
2

4
6

8
10

Data Size [byte]

La
te

nc
y

[m
s]

depth = 1
depth = 10
depth = 100

16K 32K 64K 128K 256K 512K 1M 2M 4M

Figure 15: (2-b) Configured *-depth

policy in ROS2 with OpenSplice.

0
5

10
15

Data Size [byte]

La
te

nc
y

[m
s]

fragmentsize 64KB
fragmentsize 16KB
fragmentsize 4KB

16K 32K 64K 128K 256K 512K 1M 2M 4M

Figure 16: (2-b) Different frag-
ment sizes in ROS2 with Open-
Splice best-effort policy.

0.
0

0.
5

1.
0

1.
5

2.
0

Data Size [byte]

La
te

nc
y

[m
s]

subscriber 1
subscriber 2
subscriber 3
subscriber 4
subscriber 5

16K 32K 64K 128K 256K 512K 1M

Figure 17: (1-b) ROS1 multiple
destinations publisher.

0
20

40
60

80

Data Size [byte]

La
te

nc
y

[m
s]

subscriber 1
subscriber 2
subscriber 3
subscriber 4
subscriber 5

16K 32K 64K 128K 256K 512K 1M

Figure 18: (2-b) ROS2 multiple
destinations with OpenSplice reli-

able policy.

and best-effort policy. The impact of the QoS Policy
is shown in Figures 11 and 12. In this evaluation, the net-
work is ideal, i.e., publisher-nodes resend messages very in-
frequently. If the network is not ideal, latencies with the
reliable policy increase. The differences in RELIABIL-
ITY and DURABILITY in the QoS Policy lead to overhead
at the cost of reliable communication and resilience against
late-joining Subscribers. Figure 15 shows no differences de-
pending on the depth of *-depth policy. These QoS poli-
cies are different in the number nodes save messages. Al-
though this number influences resources, this does not affect
latencies because archiving messages is conducted in every
publication.
Finally, fragment overhead is measured using OpenSplice

in (2-b) by changing the fragment size to the maximum UDP
datagram size of 64 KB. A maximum payload for Connext
and OpenSplice originates from this UDP datagram size,
because dividing large data into several datagrams has sig-
nificant impact on many implementations of the QoS Policy.
As shown in Figure 16, the end-to-end latencies are reduced,
as fragment data size increases. With a large fragment size,
DDS does not need to split large data into many datagrams,
which means fewer system calls and less overhead. In terms
of end-to-end latencies, we should preset the fragment size
to 64 KB when using large data.

3.3.4 Multiple Destinations Publisher in local cases
In this section, we prepare five subscriber-nodes and mea-

sure latencies of each node. Much of information shared
in real applications is destinated to multiple destinations.
Hence, this evaluation is practical for users. Figure 17 shows
latencies of ROS1. We can observe significant differences
between subscriber-nodes. This means ROS1 schedules mes-
sage publication in order and is not suitable for real-time
systems. For example, in 1 MB, subscriber 5 is about twice

as much as subscriber 1. In contrast, ROS2 has small dif-
ferences as shown in Figure 18. All subscribers’ behavior is
fair in ROS2. However, ROS2 latencies significantly depend
on the number of packets. This is same characteristic we
learned from Figure 10. Figure 19 also indicates fair laten-
cies and dependency of packets. Although we cannot say
that latency variance of ROS1 is larger than one of ROS2
due to the difference of the scale, Figures 17, 18, and 19
prove ROS2 message publication is more fair to multiple
subscriber-nodes than ROS1 one.

3.4 Throughput of ROS1 and ROS2
We also measure each throughput of ROS1 and ROS2 in

the remote case. In our one-way message transport experi-
ment, maximum bandwidth of the network is 12.5 MB/sec
because we use 100 Mbps Ethernet (100BASE-TX) and Full-
Duplex as shown in Table 2. Publisher-nodes repeatedly
transport each message with 10Hz.

In small data from 256 B to 2 KB, we can observe constant
gaps among ROS1, ROS2 with OpenSplice, and ROS2 with
Connext from Figure 20. These additional data correspond
with RTPS packets for QoS Policy and heartbeat. Hence,
these gaps do not depend on data size. Moreover, Connext
throughput is lower than OpenSplice one. This becomes a
big impact when users handle many kinds of small data with
high Hz and/or network bandwidth is limited.

In large data from 2 KB to 4MB, curves of Figure 21
demonstrate sustainable theoretical throughput. ROS1 and
ROS2 are able to utilize all of available bandwidth and sim-
ilarly behave in this situation. Throughput is limited by the
network and not by DDS.

3.5 Thread of ROS1 and ROS2
In this section, we measure the number of threads on each

node. Table 6 shows the result of measurements. Note that

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Data Size [byte]

La
te

nc
y

[m
s]

subscriber 1
subscriber 2
subscriber 3
subscriber 4
subscriber 5

16K 32K 64K 128K

Figure 19: (2-b) ROS2 multiple
destinations with OpenSplice reli-

able policy.

0
5

10
15

20
25

30

Data Size [byte]

Th
ro

ug
hp

ut
 [K

B/
se

c]
0

5
10

15
20

25
30

0
5

10
15

20
25

30
0

5
10

15
20

25
30

0
5

10
15

20
25

30

256 512 1K 2K

IDEAL
ROS1
ROS2 OpenSplice reliable
ROS2 OpenSplice best−effort
ROS2 Connext best−effort

Figure 20: (1-a) and (2-b) remote

cases throughput with small data.

0
2

4
6

8
10

12

Data Size [byte]

Th
ro

ug
hp

ut
 [M

B/
se

c]
0

2
4

6
8

10
12

0
2

4
6

8
10

12
0

2
4

6
8

10
12

0
2

4
6

8
10

12
0

2
4

6
8

10
12

2K 8K 32K 128K 512K 2M

MAX
IDEAL
ROS1
ROS2 OpenSplice reliable
ROS2 OpenSplice best−effort
ROS2 Connext best−effort

Figure 21: (1-a) and (2-b) remote

cases throughput with large data.

Table 5: Depth Configurable QoS Policies
*-depth policy

DEADLINE 100 ms

HISTORY LAST

depth 1, 10, or 100
RELIABILITY RELIABLE

DURABILITY TRANSIENT_LOCAL

Table 6: The Number of Thread on ROS1 or ROS2
ROS1 Connext OpenSplice FastRTPS

node 5 8 49 5
master-node 3 - - -

Table 7: Memory of .so Files for ROS1 and ROS
DDS [KB] Abstraction [KB] Total [MB]

ROS1 2,206 2.26

ROS2

Connext 11,535 9,645 21.18

OpenSplice 3,837 14,117 17.95

FastRTPS 1,324 3,953 5.28

the number described in Table 6 depends on DDS configu-
rations including QoS Policy. The number does not be fixed
by vendors.
First of all, we can observe that a ROS2 node with Open-

Splice has a lot of threads. This may cause parallelized
processing and the fact that OpenSplice is much faster than
Connext as shown in Figure 13.
Another interesting point is FastRTPS threads. A ROS2

node with FastRTPS realizes discovery and serialization, and
pub/sub data transport with the same number of ROS1
node threads. This result proves improvement of fault tol-
erance without additional resources because FastRTPS does
not need a master-node.

3.6 Memory consumption of ROS1 and ROS2
We also measure memory size of shared library object

(.so) in ROS1 and ROS2. Shared libraries are libraries that
are dynamically loaded by nodes when they start. They are
not linked to executable files but they will be vital guidelines
for estimation of memory size. We arrange the result in Ta-
ble 7. In this table, we add up library data size for pub/sub
transport. In ROS2, shared libraries are classified into the
DDS library and the ROS2 abstraction library. While DDS
libraries are provided by each vendor, ROS2 libraries ab-
stract DDS APIs and convert messages for DDS. In Table 7,
DDS and ROS2 libraries vary depending on vendors. These
library data size tends to increase because its QoS capabil-
ity and abstraction. For small embedded systems, we need
a minimal DDS implementation and light abstraction layer.

3.7 Lessons Learned
So far, we have clarified characteristic of DDS implemen-

tations through ROS2 from several standpoints: ROS2 ca-
pability, latencies, throughput, the number of threads and
memory consumption. We can get insight and guidelines for
DDS through ROS2 from experimental results. They will
be meaningful for DDS and ROS users.

DDS supports QoS Policy but there is trade-off between
end-to-end latencies and throughput. In the local case,
overhead latencies of ROS2 are not trivial. From Section
3.3, the latencies are caused by two data conversions for
DDS and DDS transaction. DDS end-to-end latencies are
constant until message data size is lower than maximum
packet size (64 KB) as shown in Figure 9. On the other
hand, as one large message is divided into several packets,
the latencies sharply increase as show in Figures 10 and
18. Whether message data size is over 64 KB or not is
important issue especially in DDS because management of
divided packets with QoS Policy needs significant process-
ing time and alternative APIs provided by some vendors.
We should understand influence of divided packets and keep
in mind this issue when using DDS. While DDS and ROS2
abstraction have overhead latencies, OpenSplice utilizes a
lot of threads and processes faster than Connext as shown
in Figure 13. This is a reason why we currently should use
OpenSplice in the underlying implementation of DDS in the
local case. In the remote case, although overhead latencies
are trivial, we must consider throughput for bandwidth. As
shown in Figure 20, Connext is superior to OpenSplice in
terms of throughput. This constant overhead throughput is
predictable and exists no matter how small message data
size is. It influences especially when many kinds of topic
are used with high Hz. We recommend Connext to consider
minimum necessary throughput in the remote case.

DDS brings supports of real-time embedded systems to
ROS2. We believe ROS2 outweigh its cost for using DDS.
Fault tolerance of DDS is superior because it is able to save
past data with QoS Policy and does not need a master-node.
DDS guarantees fair latencies as shown in Figures 18 and
19. In addition, DDS is able to run on multiple platforms
include RTOS and switch DDS implementation as needed.
Under RTPS protocol, any ROS2 nodes communicate with
each other without relation to its platform. FastRTPS is
currently the best DDS implementation for embedded sys-
tems in thread and memory as Table 6 indicates, but it is
not suitable for small embedded system.

Since ROS2 is under development, we have clarified room
for improvement of ROS2 performance and capability to

Table 8: Comparison of ROS2 to Related Work
Small Real-Time Publish/ Frequent Open Library RTOS Mac/ QoS

Embedded Subscribe Update Source and Tools Windows

RTM [8] � � �
Extended RTC [10] � �

RT-Middleware for VxWorks [17] � � � � � �
RTM-TECS [16] � � � � �

rosc [13] � � � � �
μROS [19] � � � � � �

ROS Industrial [4] � � � � �
RT-ROS [36] � � �
ROS1 [28] � � � �
ROS2 [23] � � � � � � � � �

maximize DDS potential. First, current QoS Policies sup-
ported by ROS2 provide fault tolerance but they are insuf-
ficient for real-time processing. ROS2 has to expand the
scope of supported QoS Policies. Second, for small embed-
ded system, ROS2 needs a minimum DDS implementation
and minimum abstraction layer. For example, we need C
API library for ROS2 and a small DDS implementation.
ROS2 easily supports them because of its abstraction layer.
FreeRTPS [22] [27] is a good candidate for this issue but it
is under development. Third, we also clarify a need of al-
ternative API for large message to manage divided packets.
This is critical to handle large message. Abstraction of this
will shorten DDS end-to-end latencies and fulfill deficiency
of Table 4. Finally, we must tune DDS configurations for
ROS2 because there are numerous vendor specific configu-
rations options.

4. RELATED WORK
In addition to the ROS, the Robot Technology Middle-

ware (RTM) [8] is well known and widely used for robotics
development. In this section, we discuss research related to
the ROS and RTM.
RTM: RTM applications consist of Robotic Technology

Component (RTC), whose specifications are managed by the
OMG [1]. RTM cannot handle hard real-time and embedded
systems because it generally uses not real-time CORBA [31]
but CORBA [35]. CORBA is an architecture for distributed
object computing standardized by the OMG. CORBA man-
ages packets in a FIFO manager and requires significant re-
sources. CORBA lacks key quality of service features and
performance optimizations for real-time constraints.
Extended RTC: [10] extends RTC for real-time require-

ments using GIOP packets rather than CORBA packets.
The interface of the Extended RTC provides additional op-
tions such as priority management and multiple periodic
tasks. However, it is difficult to implement Extended RTC in
embedded systems because it is based on only an advanced
real-time Linux kernel.
RT-Middleware for VxWorks: Using lightweight CORBA

and libraries, [17] enables RTM to run on VxWorks, which
is an RTOS, and embedded systems. Nonetheless, [17] did
not consider real-time requirements. Furthermore, it uses
global variables and cannot run on distributed systems.
RTM-TECS: RTM-TOPPERS Embedded Component

Systems (TECS) [16] proposes a collaboration framework of
two component technologies, i.e., RTM and TECS. TECS [9]
has been added to RTM to satisfy real-time processing re-
quirements. [16] adapted RPC and one-way data transport
between TECS components and RTC. RTM-TECS enhances
the capability for real-time embedded systems.
rosc: rosc [13] is a portable and dependency-free ROS

client library in pure C that supports small embedded sys-

tems and any OS. rosc was motivated by a bare-metal, low-
memory reference scenario, which ROS2 also targets. While
rosc is available as an alpha release, it is in development and
has not been updated since 2014.

μROS: μROS [19] is a lightweight ROS client that can
run on modern 32-bit micro-controllers. Targeting embed-
ded systems, it is implemented in ANSI C and runs on an
RTOS, such as ChibiOS. μROS supports some of the fea-
tures of ROS and can coexist with ROS1. However, as of
2013, development has ceased.

ROS Industrial: ROS-Industrial [4] is an open-source
project that extends the advanced capabilities of ROS soft-
ware to manufacturing. This library provides industrial de-
velopers with the capabilities of ROS for economical robotics
research under the business-friendly BSD and Apache 2.0 li-
censes.

RT-ROS: RT-ROS [36] provides an integrated real-time/non-
real-time task execution environment. It is constructed us-
ing Linux and the Nuttx Kernel. Using the ROS in an
RTOS, applications can benefit from some features of the
RTOS; however, this does not mean that the ROS provides
options for real-time constrains. To use RT-ROS, it is neces-
sary to modify legacy ROS libraries and nodes. In addition,
RT-ROS is not open-source software; therefore, it is devel-
oped more slowly than open-source software.

Table 8 briefly summarizes the characteristics of several
related methods and compares them to ROS2. ROS1 has
more libraries and tools for robotics development than RTM.
At present, ROS2 has only a few libraries and packages be-
cause it is currently in development. However, by using
multiple DDS implementations, ROS2 can run on embed-
ded systems. In addition, by utilizing the capabilities of
DDS and RTOSs, ROS2 is designed to overcome real-time
constraints and has been developed to be cross-platform.
ROS2 inherits and improves the capabilities of ROS1.

5. CONCLUSION
This paper has conducted proof of concept for DDS ap-

proach to ROS and arranged DDS characteristic, guidelines,
and room for improvement. From various experiments, we
have clarified the capabilities of the currently available ROS2
and evaluated the performance characteristics of ROS1 and
DDS through ROS2 in various situations from several as-
pects: latencies, throughput, the number of threads, and
memory consumption. Furthermore, we have measured the
influence of switching DDS implementations and the QoS
Policies in ROS2. Understanding each DDS characteristic,
we should use a different DDS implementation for different
situations. DDS gives ROS2 fault tolerance and flexibility
for various platforms. Utilization of DDS is not limited in
ROS because ROS2 is one of systems using DDS. Above
contributions are valuable for many people.

In future work, we will evaluate real-time applications
such as an autonomous driving vehicle [18] as case studies us-
ing ROS2. Moreover, we have to breakdown DDS processing
time and execute ROS2 on RTOS. We also are interested in
ROS2 behavior on embedded devices. Since ROS2 is under
development, we must maximize DDS potential by tuning
and abstracting more QoS Policies for real-time processing
and DDS configurations.

6. REFERENCES
[1] Object Management Group (OMG).

http://www.omg.org/.
[2] Open Source Robotics Foundation (OSRF).

http://www.osrfoundation.org/.
[3] Point Cloud Library (PCL). http://pointclouds.org/.
[4] ROS Industrial. http://rosindustrial.org/.
[5] Source code using ROS1 evaluations.

https://github.com/m-yuya/ros1 evaluation.
[6] Source code using ROS2 evaluations.

https://github.com/m-yuya/ros2 evaluation.
[7] Willow Garage. https://www.willowgarage.com/.
[8] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and

W.-K. Yoon. RT-middleware: distributed component
middleware for RT (robot technology). In Proc. of
IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3933–3938, 2005.

[9] T. Azumi, Y. Nagahara, H. Oyama, and N. Nishio.
mruby on TECS: Component-Based Framework for
Running Script Program. In Proc. of IEEE
International Symposium on Real-Time Distributed
Computing, pages 252–259, 2015.

[10] H. Chishiro, Y. Fujita, A. Takeda, Y. Kojima,
K. Funaoka, S. Kato, and N. Yamasaki. Extended
RT-component framework for RT-middleware. In
Proc. of IEEE International Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing, pages 161–168, 2009.

[11] S. Cousins. Exponential growth of ROS [ROS Topics].
IEEE Robotics & Automation Magazine, 1(18):19–20,
2011.

[12] S. Cousins, B. Gerkey, K. Conley, and W. Garage.
Sharing software with ROS [ROS topics]. IEEE
Robotics & Automation Magazine, 17(2):12–14, 2010.

[13] N. Ensslen. Introducing rosc. In ROS Developers
Conference, 2013.

[14] eProsima. FastRTPS.
http://www.eprosima.com/index.php/products-
all/eprosima-fast-rtps.

[15] A. Garg. Real-time Linux kernel scheduler. Linux
Journal, 2009(184):2, 2009.

[16] R. Hasegawa, H. Oyama, and T. Azumi. RTM-TECS:
Collabolation Framework for Robot Technology
Middleware and Embedded Component System. In
Proc. of IEEE International Symposium on Real-Time
Computing, 2016.

[17] A. Ikezoe, H. Nakamoto, and M. Nagase. OpenRT
Platform/RT-Middleware for VxWorks.
ROBOMECH2010, pages 2A1–F19, 2010.

[18] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya,
K. Takeda, and T. Hamada. An Open Approach to
Autonomous Vehicles. IEEE Micro, 35(6):60–68, 2015.

[19] M. Migliavacca and A. Zoppi. μROSnode: running
ROS on microcontrollers. In ROS Developers

Conference, 2013.
[20] Object Management Group (OMG). the Real-time

Publish-Subscribe Protocol (RTPS) DDS
Interoperability Wire Protocol v2.2.
http://www.omg.org/spec/DDSI-RTPS/2.2/, 2014.

[21] Object Management Group (OMG). Data
Distribution Services (DDS) v1.4.
http://www.omg.org/spec/DDS/1.4/, 2015.

[22] Open Source Robotics Foundation (OSRF).
FreeRTPS. https://github.com/ros2/freertps.

[23] Open Source Robotics Foundation (OSRF). ROS2.
https://github.com/ros2.

[24] G. Pardo-Castellote. OMG Data-Distribution Service:
Architectural Overview. In Proc. of IEEE
International Conference on Distributed Computing
Systems Workshops, pages 200–206, 2003.

[25] PRISMTECH. OpenSplice DDS Community Edition.
http://www.prismtech.com/dds-community.

[26] PRISMTECH. Vortex OpenSplice.
http://www.prismtech.com/vortex/vortex-opensplice.

[27] M. Quigley. ROS2 on small embedded systems. In
ROS Developers Conference, 2015.

[28] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng. ROS: an
open-source Robot Operating System. In Proc. of
IEEE International Conference on Robotics and
Automation Workshop on Open Source Software,
volume 3, page 5, 2009.

[29] Real-Time Innovations. RTI Connext DDS
Professional.
http://www.rti.com/products/dds/index.html.

[30] J. M. Schlesselman, G. Pardo-Castellote, and
B. Farabaugh. OMG data-distribution service (DDS):
Aarchitectural Update. In Proc. of IEEE Military
Communications Conference, volume 2, pages
961–967, 2004.

[31] D. C. Schmidt, D. L. Levine, and S. Mungee. The
design of the TAO real-time object request broker.
Computer Communications, 21(4):294–324, 1998.

[32] S. Sierla, J. Peltola, and K. Koskinen. Evaluation of a
real-time distribution service. In Proc. of the 3rd
International Symposium on Open Control System,
2003.

[33] D. Thomas, E. Fernandez, and W. Woodall. State of
ROS2: Demos and the technology behind. In ROS
Developers Conference, 2015.

[34] C. Urmson, J. Anhalt, D. Bagnell, C. Baker,
R. Bittner, M. Clark, J. Dolan, D. Duggins,
T. Galatali, C. Geyer, et al. Autonomous driving in
urban environments: Boss and the Urban Challenge.
Journal of Field Robotics, 25(8):425–466, 2008.

[35] S. Vinoski. CORBA: integrating diverse applications
within distributed heterogeneous environments. IEEE
Communications Magazine, 35(2):46–55, 1997.

[36] H. Wei, Z. Shao, Z. Huang, R. Chen, Y. Guan, J. Tan,
and Z. Shao. RT-ROS: A real-time ROS architecture
on multi-core processors. Future Generation Computer
Systems, 56:171–178, 2015.

[37] M. Xiong, J. Parsons, J. Edmondson, H. Nguyen, and
D. C. Schmidt. Evaluating the performance of
publish/subscribe platforms for information
management in distributed real-time and embedded
systems. omgwiki. org/dds, 2009.

