|
@@ -0,0 +1,136 @@
|
|
|
+from typing import Any, Callable, Dict, List
|
|
|
+
|
|
|
+try:
|
|
|
+ from elasticsearch import Elasticsearch
|
|
|
+ from elasticsearch.helpers import bulk
|
|
|
+except ImportError:
|
|
|
+ raise ImportError(
|
|
|
+ "Elasticsearch requires extra dependencies. Install with `pip install embedchain[elasticsearch]`"
|
|
|
+ ) from None
|
|
|
+
|
|
|
+from embedchain.config import ElasticsearchDBConfig
|
|
|
+from embedchain.models.VectorDimensions import VectorDimensions
|
|
|
+from embedchain.vectordb.base_vector_db import BaseVectorDB
|
|
|
+
|
|
|
+
|
|
|
+class ElasticsearchDB(BaseVectorDB):
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ es_config: ElasticsearchDBConfig = None,
|
|
|
+ embedding_fn: Callable[[list[str]], list[str]] = None,
|
|
|
+ vector_dim: VectorDimensions = None,
|
|
|
+ collection_name: str = None,
|
|
|
+ ):
|
|
|
+ """
|
|
|
+ Elasticsearch as vector database
|
|
|
+ :param es_config. elasticsearch database config to be used for connection
|
|
|
+ :param embedding_fn: Function to generate embedding vectors.
|
|
|
+ :param vector_dim: Vector dimension generated by embedding fn
|
|
|
+ :param collection_name: Optional. Collection name for the database.
|
|
|
+ """
|
|
|
+ if not hasattr(embedding_fn, "__call__"):
|
|
|
+ raise ValueError("Embedding function is not a function")
|
|
|
+ if es_config is None:
|
|
|
+ raise ValueError("ElasticsearchDBConfig is required")
|
|
|
+ if vector_dim is None:
|
|
|
+ raise ValueError("Vector Dimension is required to refer correct index and mapping")
|
|
|
+ if collection_name is None:
|
|
|
+ raise ValueError("collection name is required. It cannot be empty")
|
|
|
+ self.embedding_fn = embedding_fn
|
|
|
+ self.client = Elasticsearch(es_config.ES_URL, **es_config.ES_EXTRA_PARAMS)
|
|
|
+ self.vector_dim = vector_dim
|
|
|
+ self.es_index = f"{collection_name}_{self.vector_dim}"
|
|
|
+ index_settings = {
|
|
|
+ "mappings": {
|
|
|
+ "properties": {
|
|
|
+ "text": {"type": "text"},
|
|
|
+ "text_vector": {"type": "dense_vector", "index": False, "dims": self.vector_dim},
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if not self.client.indices.exists(index=self.es_index):
|
|
|
+ # create index if not exist
|
|
|
+ print("Creating index", self.es_index, index_settings)
|
|
|
+ self.client.indices.create(index=self.es_index, body=index_settings)
|
|
|
+ super().__init__()
|
|
|
+
|
|
|
+ def _get_or_create_db(self):
|
|
|
+ return self.client
|
|
|
+
|
|
|
+ def _get_or_create_collection(self, name):
|
|
|
+ """Note: nothing to return here. Discuss later"""
|
|
|
+
|
|
|
+ def get(self, ids: List[str], where: Dict[str, any]) -> List[str]:
|
|
|
+ """
|
|
|
+ Get existing doc ids present in vector database
|
|
|
+ :param ids: list of doc ids to check for existance
|
|
|
+ :param where: Optional. to filter data
|
|
|
+ """
|
|
|
+ query = {"bool": {"must": [{"ids": {"values": ids}}]}}
|
|
|
+ if "app_id" in where:
|
|
|
+ app_id = where["app_id"]
|
|
|
+ query["bool"]["must"].append({"term": {"metadata.app_id": app_id}})
|
|
|
+ response = self.client.search(index=self.es_index, query=query, _source=False)
|
|
|
+ docs = response["hits"]["hits"]
|
|
|
+ ids = [doc["_id"] for doc in docs]
|
|
|
+ return set(ids)
|
|
|
+
|
|
|
+ def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any:
|
|
|
+ """
|
|
|
+ add data in vector database
|
|
|
+ :param documents: list of texts to add
|
|
|
+ :param metadatas: list of metadata associated with docs
|
|
|
+ :param ids: ids of docs
|
|
|
+ """
|
|
|
+ docs = []
|
|
|
+ embeddings = self.embedding_fn(documents)
|
|
|
+ for id, text, metadata, text_vector in zip(ids, documents, metadatas, embeddings):
|
|
|
+ docs.append(
|
|
|
+ {
|
|
|
+ "_index": self.es_index,
|
|
|
+ "_id": id,
|
|
|
+ "_source": {"text": text, "metadata": metadata, "text_vector": text_vector},
|
|
|
+ }
|
|
|
+ )
|
|
|
+ bulk(self.client, docs)
|
|
|
+ self.client.indices.refresh(index=self.es_index)
|
|
|
+ return
|
|
|
+
|
|
|
+ def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
|
|
|
+ """
|
|
|
+ query contents from vector data base based on vector similarity
|
|
|
+ :param input_query: list of query string
|
|
|
+ :param n_results: no of similar documents to fetch from database
|
|
|
+ :param where: Optional. to filter data
|
|
|
+ """
|
|
|
+ input_query_vector = self.embedding_fn(input_query)
|
|
|
+ query_vector = input_query_vector[0]
|
|
|
+ query = {
|
|
|
+ "script_score": {
|
|
|
+ "query": {"bool": {"must": [{"exists": {"field": "text"}}]}},
|
|
|
+ "script": {
|
|
|
+ "source": "cosineSimilarity(params.input_query_vector, 'text_vector') + 1.0",
|
|
|
+ "params": {"input_query_vector": query_vector},
|
|
|
+ },
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if "app_id" in where:
|
|
|
+ app_id = where["app_id"]
|
|
|
+ query["script_score"]["query"]["bool"]["must"] = [{"term": {"metadata.app_id": app_id}}]
|
|
|
+ _source = ["text"]
|
|
|
+ response = self.client.search(index=self.es_index, query=query, _source=_source, size=n_results)
|
|
|
+ docs = response["hits"]["hits"]
|
|
|
+ contents = [doc["_source"]["text"] for doc in docs]
|
|
|
+ return contents
|
|
|
+
|
|
|
+ def count(self) -> int:
|
|
|
+ query = {"match_all": {}}
|
|
|
+ response = self.client.count(index=self.es_index, query=query)
|
|
|
+ doc_count = response["count"]
|
|
|
+ return doc_count
|
|
|
+
|
|
|
+ def reset(self):
|
|
|
+ # Delete all data from the database
|
|
|
+ if self.client.indices.exists(index=self.es_index):
|
|
|
+ # delete index in Es
|
|
|
+ self.client.indices.delete(index=self.es_index)
|