|
@@ -0,0 +1,40 @@
|
|
|
+from typing import Iterable, Optional, Union
|
|
|
+
|
|
|
+from langchain.callbacks.manager import CallbackManager
|
|
|
+from langchain.callbacks.stdout import StdOutCallbackHandler
|
|
|
+from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
|
|
+from langchain_community.llms import VLLM as BaseVLLM
|
|
|
+
|
|
|
+from embedchain.config import BaseLlmConfig
|
|
|
+from embedchain.helpers.json_serializable import register_deserializable
|
|
|
+from embedchain.llm.base import BaseLlm
|
|
|
+
|
|
|
+
|
|
|
+@register_deserializable
|
|
|
+class VLLM(BaseLlm):
|
|
|
+ def __init__(self, config: Optional[BaseLlmConfig] = None):
|
|
|
+ super().__init__(config=config)
|
|
|
+ if self.config.model is None:
|
|
|
+ self.config.model = "mosaicml/mpt-7b"
|
|
|
+
|
|
|
+ def get_llm_model_answer(self, prompt):
|
|
|
+ return self._get_answer(prompt=prompt, config=self.config)
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def _get_answer(prompt: str, config: BaseLlmConfig) -> Union[str, Iterable]:
|
|
|
+ callback_manager = [StreamingStdOutCallbackHandler()] if config.stream else [StdOutCallbackHandler()]
|
|
|
+
|
|
|
+ # Prepare the arguments for BaseVLLM
|
|
|
+ llm_args = {
|
|
|
+ "model": config.model,
|
|
|
+ "temperature": config.temperature,
|
|
|
+ "top_p": config.top_p,
|
|
|
+ "callback_manager": CallbackManager(callback_manager),
|
|
|
+ }
|
|
|
+
|
|
|
+ # Add model_kwargs if they are not None
|
|
|
+ if config.model_kwargs is not None:
|
|
|
+ llm_args.update(config.model_kwargs)
|
|
|
+
|
|
|
+ llm = BaseVLLM(**llm_args)
|
|
|
+ return llm(prompt)
|