|
@@ -21,8 +21,6 @@ class QdrantDB(BaseVectorDB):
|
|
|
Qdrant as vector database
|
|
|
"""
|
|
|
|
|
|
- BATCH_SIZE = 10
|
|
|
-
|
|
|
def __init__(self, config: QdrantDBConfig = None):
|
|
|
"""
|
|
|
Qdrant as vector database
|
|
@@ -116,7 +114,7 @@ class QdrantDB(BaseVectorDB):
|
|
|
collection_name=self.collection_name,
|
|
|
scroll_filter=models.Filter(must=qdrant_must_filters),
|
|
|
offset=offset,
|
|
|
- limit=self.BATCH_SIZE,
|
|
|
+ limit=self.config.batch_size,
|
|
|
)
|
|
|
offset = response[1]
|
|
|
for doc in response[0]:
|
|
@@ -148,13 +146,13 @@ class QdrantDB(BaseVectorDB):
|
|
|
qdrant_ids.append(id)
|
|
|
payloads.append({"identifier": id, "text": document, "metadata": copy.deepcopy(metadata)})
|
|
|
|
|
|
- for i in tqdm(range(0, len(qdrant_ids), self.BATCH_SIZE), desc="Adding data in batches"):
|
|
|
+ for i in tqdm(range(0, len(qdrant_ids), self.config.batch_size), desc="Adding data in batches"):
|
|
|
self.client.upsert(
|
|
|
collection_name=self.collection_name,
|
|
|
points=Batch(
|
|
|
- ids=qdrant_ids[i : i + self.BATCH_SIZE],
|
|
|
- payloads=payloads[i : i + self.BATCH_SIZE],
|
|
|
- vectors=embeddings[i : i + self.BATCH_SIZE],
|
|
|
+ ids=qdrant_ids[i : i + self.config.batch_size],
|
|
|
+ payloads=payloads[i : i + self.config.batch_size],
|
|
|
+ vectors=embeddings[i : i + self.config.batch_size],
|
|
|
),
|
|
|
**kwargs,
|
|
|
)
|
|
@@ -251,4 +249,4 @@ class QdrantDB(BaseVectorDB):
|
|
|
|
|
|
def delete(self, where: dict):
|
|
|
db_filter = self._generate_query(where)
|
|
|
- self.client.delete(collection_name=self.collection_name, points_selector=db_filter)
|
|
|
+ self.client.delete(collection_name=self.collection_name, points_selector=db_filter)
|