|
@@ -44,7 +44,7 @@ class ElasticsearchDB(BaseVectorDB):
|
|
|
"mappings": {
|
|
|
"properties": {
|
|
|
"text": {"type": "text"},
|
|
|
- "text_vector": {"type": "dense_vector", "index": False, "dims": self.vector_dim},
|
|
|
+ "embeddings": {"type": "dense_vector", "index": False, "dims": self.vector_dim},
|
|
|
}
|
|
|
}
|
|
|
}
|
|
@@ -84,12 +84,12 @@ class ElasticsearchDB(BaseVectorDB):
|
|
|
"""
|
|
|
docs = []
|
|
|
embeddings = self.embedding_fn(documents)
|
|
|
- for id, text, metadata, text_vector in zip(ids, documents, metadatas, embeddings):
|
|
|
+ for id, text, metadata, embeddings in zip(ids, documents, metadatas, embeddings):
|
|
|
docs.append(
|
|
|
{
|
|
|
"_index": self.es_index,
|
|
|
"_id": id,
|
|
|
- "_source": {"text": text, "metadata": metadata, "text_vector": text_vector},
|
|
|
+ "_source": {"text": text, "metadata": metadata, "embeddings": embeddings},
|
|
|
}
|
|
|
)
|
|
|
bulk(self.client, docs)
|
|
@@ -109,7 +109,7 @@ class ElasticsearchDB(BaseVectorDB):
|
|
|
"script_score": {
|
|
|
"query": {"bool": {"must": [{"exists": {"field": "text"}}]}},
|
|
|
"script": {
|
|
|
- "source": "cosineSimilarity(params.input_query_vector, 'text_vector') + 1.0",
|
|
|
+ "source": "cosineSimilarity(params.input_query_vector, 'embeddings') + 1.0",
|
|
|
"params": {"input_query_vector": query_vector},
|
|
|
},
|
|
|
}
|