浏览代码

Add AWS Bedrock support (#1482)

Dev Khant 1 年之前
父节点
当前提交
1e7618dfa4
共有 12 个文件被更改,包括 454 次插入19 次删除
  1. 31 0
      docs/llms.mdx
  2. 196 0
      mem0/llms/aws_bedrock.py
  3. 30 1
      mem0/llms/groq.py
  4. 30 1
      mem0/llms/openai.py
  5. 30 1
      mem0/llms/together.py
  6. 3 5
      mem0/memory/main.py
  7. 2 1
      mem0/utils/factory.py
  8. 86 1
      poetry.lock
  9. 1 0
      pyproject.toml
  10. 15 3
      tests/llms/test_groq.py
  11. 15 3
      tests/llms/test_openai.py
  12. 15 3
      tests/llms/test_together.py

+ 31 - 0
docs/llms.mdx

@@ -10,6 +10,7 @@ Mem0 includes built-in support for various popular large language models. Memory
   <Card title="OpenAI" href="#openai"></Card>
   <Card title="Groq" href="#groq"></Card>
   <Card title="Together" href="#together"></Card>
+  <Card title="AWS Bedrock" href="#aws_bedrock"></Card>
 </CardGroup>
 
 ## OpenAI
@@ -92,3 +93,33 @@ config = {
 m = Memory.from_config(config)
 m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
 ```
+
+## AWS Bedrock
+
+### Setup
+- Before using the AWS Bedrock LLM, make sure you have the appropriate model access from [Bedrock Console](https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/modelaccess).
+- You will also need to authenticate the `boto3` client by using a method in the [AWS documentation](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#configuring-credentials)
+- You will have to export `AWS_REGION`, `AWS_ACCESS_KEY`, and `AWS_SECRET_ACCESS_KEY` to set environment variables.
+
+```python
+import os
+from mem0 import Memory
+
+os.environ['AWS_REGION'] = 'us-east-1'
+os.environ["AWS_ACCESS_KEY"] = "xx"
+os.environ["AWS_SECRET_ACCESS_KEY"] = "xx"
+
+config = {
+    "llm": {
+        "provider": "aws_bedrock",
+        "config": {
+            "model": "arn:aws:bedrock:us-east-1:123456789012:model/your-model-name",
+            "temperature": 0.2,
+            "max_tokens": 1500,
+        }
+    }
+}
+
+m = Memory.from_config(config)
+m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
+```

+ 196 - 0
mem0/llms/aws_bedrock.py

@@ -0,0 +1,196 @@
+import os
+import json
+from typing import Dict, List, Optional, Any
+
+import boto3
+
+from mem0.llms.base import LLMBase
+
+
+class AWSBedrockLLM(LLMBase):
+    def __init__(self, model="cohere.command-r-v1:0"):
+        self.client = boto3.client("bedrock-runtime", region_name=os.environ.get("AWS_REGION"), aws_access_key_id=os.environ.get("AWS_ACCESS_KEY"), aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY"))
+        self.model = model
+
+    def _format_messages(self, messages: List[Dict[str, str]]) -> str:
+        """
+        Formats a list of messages into the required prompt structure for the model.
+
+        Args:
+            messages (List[Dict[str, str]]): A list of dictionaries where each dictionary represents a message. 
+                                            Each dictionary contains 'role' and 'content' keys.
+
+        Returns:
+            str: A formatted string combining all messages, structured with roles capitalized and separated by newlines.
+        """
+        formatted_messages = []
+        for message in messages:
+            role = message['role'].capitalize()
+            content = message['content']
+            formatted_messages.append(f"\n\n{role}: {content}")
+        
+        return "".join(formatted_messages) + "\n\nAssistant:"
+    
+    def _parse_response(self, response, tools) -> str:
+        """
+        Process the response based on whether tools are used or not.
+
+        Args:
+            response: The raw response from API.
+            tools: The list of tools provided in the request.
+
+        Returns:
+            str or dict: The processed response.
+        """
+        if tools:
+            processed_response = {
+                "tool_calls": []
+            }
+            
+            if response["output"]["message"]["content"]:
+                for item in response["output"]["message"]["content"]:
+                    if "toolUse" in item:
+                        processed_response["tool_calls"].append({
+                            "name": item["toolUse"]["name"],
+                            "arguments": item["toolUse"]["input"]
+                        })
+            
+            return processed_response
+        
+        response_body = json.loads(response['body'].read().decode())
+        return response_body.get('completion', '')
+    
+    def _prepare_input(
+            self,
+            provider: str,
+            model: str,
+            prompt: str,
+            model_kwargs: Optional[Dict[str, Any]] = {},
+        ) -> Dict[str, Any]:
+        """
+            Prepares the input dictionary for the specified provider's model by mapping and renaming
+            keys in the input based on the provider's requirements.
+
+            Args:
+                provider (str): The name of the service provider (e.g., "meta", "ai21", "mistral", "cohere", "amazon").
+                model (str): The name or identifier of the model being used.
+                prompt (str): The text prompt to be processed by the model.
+                model_kwargs (Dict[str, Any]): Additional keyword arguments specific to the model's requirements.
+
+            Returns:
+                Dict[str, Any]: The prepared input dictionary with the correct keys and values for the specified provider.
+        """
+
+        input_body = {"prompt": prompt, **model_kwargs}
+    
+        provider_mappings = {
+            "meta": {"max_tokens_to_sample": "max_gen_len"},
+            "ai21": {"max_tokens_to_sample": "maxTokens", "top_p": "topP"},
+            "mistral": {"max_tokens_to_sample": "max_tokens"},
+            "cohere": {"max_tokens_to_sample": "max_tokens", "top_p": "p"},
+        }
+        
+        if provider in provider_mappings:
+            for old_key, new_key in provider_mappings[provider].items():
+                if old_key in input_body:
+                    input_body[new_key] = input_body.pop(old_key)
+        
+        if provider == "cohere" and "cohere.command-r" in model:
+            input_body["message"] = input_body.pop("prompt")
+        
+        if provider == "amazon":
+            input_body = {
+                "inputText": prompt,
+                "textGenerationConfig": {
+                    "maxTokenCount": model_kwargs.get("max_tokens_to_sample"),
+                    "topP": model_kwargs.get("top_p"),
+                    "temperature": model_kwargs.get("temperature")
+                }
+            }
+            input_body["textGenerationConfig"] = {k: v for k, v in input_body["textGenerationConfig"].items() if v is not None}
+    
+        return input_body
+
+    def _convert_tool_format(self, original_tools):
+        """
+        Converts a list of tools from their original format to a new standardized format.
+
+        Args:
+            original_tools (list): A list of dictionaries representing the original tools, each containing a 'type' key and corresponding details.
+
+        Returns:
+            list: A list of dictionaries representing the tools in the new standardized format.
+        """
+        new_tools = []
+        
+        for tool in original_tools:
+            if tool['type'] == 'function':
+                function = tool['function']
+                new_tool = {
+                    "toolSpec": {
+                        "name": function['name'],
+                        "description": function['description'],
+                        "inputSchema": {
+                            "json": {
+                                "type": "object",
+                                "properties": {},
+                                "required": function['parameters'].get('required', [])
+                            }
+                        }
+                    }
+                }
+                
+                for prop, details in function['parameters'].get('properties', {}).items():
+                    new_tool["toolSpec"]["inputSchema"]["json"]["properties"][prop] = {
+                        "type": details.get('type', 'string'),
+                        "description": details.get('description', '')
+                    }
+                
+                new_tools.append(new_tool)
+        
+        return new_tools
+
+    def generate_response(
+        self,
+        messages: List[Dict[str, str]],
+        tools: Optional[List[Dict]] = None,
+        tool_choice: str = "auto",
+    ):
+        """
+        Generate a response based on the given messages using AWS Bedrock.
+
+        Args:
+            messages (list): List of message dicts containing 'role' and 'content'.
+            tools (list, optional): List of tools that the model can call. Defaults to None.
+            tool_choice (str, optional): Tool choice method. Defaults to "auto".
+
+        Returns:
+            str: The generated response.
+        """
+
+        if tools:
+            # Use converse method when tools are provided
+            messages = [{"role": "user", "content": [{"text": message["content"]} for message in messages]}]
+            tools_config = {"tools": self._convert_tool_format(tools)}
+
+            response = self.client.converse(
+                modelId=self.model,
+                messages=messages,
+                toolConfig=tools_config
+            )
+            print("Tools response: ", response)
+        else:
+            # Use invoke_model method when no tools are provided
+            prompt = self._format_messages(messages)
+            provider = self.model.split(".")[0]
+            input_body = self._prepare_input(provider, self.model, prompt)
+            body = json.dumps(input_body)
+
+            response = self.client.invoke_model(
+                body=body,
+                modelId=self.model,
+                accept='application/json',
+                contentType='application/json'
+            )
+
+        return self._parse_response(response, tools)

+ 30 - 1
mem0/llms/groq.py

@@ -1,3 +1,4 @@
+import json
 from typing import Dict, List, Optional
 
 from groq import Groq
@@ -10,6 +11,34 @@ class GroqLLM(LLMBase):
         self.client = Groq()
         self.model = model
 
+    def _parse_response(self, response, tools):
+        """
+        Process the response based on whether tools are used or not.
+
+        Args:
+            response: The raw response from API.
+            tools: The list of tools provided in the request.
+
+        Returns:
+            str or dict: The processed response.
+        """
+        if tools:
+            processed_response = {
+                "content": response.choices[0].message.content,
+                "tool_calls": []
+            }
+            
+            if response.choices[0].message.tool_calls:
+                for tool_call in response.choices[0].message.tool_calls:
+                    processed_response["tool_calls"].append({
+                        "name": tool_call.function.name,
+                        "arguments": json.loads(tool_call.function.arguments)
+                    })
+            
+            return processed_response
+        else:
+            return response.choices[0].message.content
+
     def generate_response(
         self,
         messages: List[Dict[str, str]],
@@ -37,4 +66,4 @@ class GroqLLM(LLMBase):
             params["tool_choice"] = tool_choice
 
         response = self.client.chat.completions.create(**params)
-        return response
+        return self._parse_response(response, tools)

+ 30 - 1
mem0/llms/openai.py

@@ -1,3 +1,4 @@
+import json
 from typing import Dict, List, Optional
 
 from openai import OpenAI
@@ -9,6 +10,34 @@ class OpenAILLM(LLMBase):
     def __init__(self, model="gpt-4o"):
         self.client = OpenAI()
         self.model = model
+    
+    def _parse_response(self, response, tools):
+        """
+        Process the response based on whether tools are used or not.
+
+        Args:
+            response: The raw response from API.
+            tools: The list of tools provided in the request.
+
+        Returns:
+            str or dict: The processed response.
+        """
+        if tools:
+            processed_response = {
+                "content": response.choices[0].message.content,
+                "tool_calls": []
+            }
+            
+            if response.choices[0].message.tool_calls:
+                for tool_call in response.choices[0].message.tool_calls:
+                    processed_response["tool_calls"].append({
+                        "name": tool_call.function.name,
+                        "arguments": json.loads(tool_call.function.arguments)
+                    })
+            
+            return processed_response
+        else:
+            return response.choices[0].message.content
 
     def generate_response(
         self,
@@ -37,4 +66,4 @@ class OpenAILLM(LLMBase):
             params["tool_choice"] = tool_choice
 
         response = self.client.chat.completions.create(**params)
-        return response
+        return self._parse_response(response, tools)

+ 30 - 1
mem0/llms/together.py

@@ -1,3 +1,4 @@
+import json
 from typing import Dict, List, Optional
 
 from together import Together
@@ -9,6 +10,34 @@ class TogetherLLM(LLMBase):
     def __init__(self, model="mistralai/Mixtral-8x7B-Instruct-v0.1"):
         self.client = Together()
         self.model = model
+    
+    def _parse_response(self, response, tools):
+        """
+        Process the response based on whether tools are used or not.
+
+        Args:
+            response: The raw response from API.
+            tools: The list of tools provided in the request.
+
+        Returns:
+            str or dict: The processed response.
+        """
+        if tools:
+            processed_response = {
+                "content": response.choices[0].message.content,
+                "tool_calls": []
+            }
+            
+            if response.choices[0].message.tool_calls:
+                for tool_call in response.choices[0].message.tool_calls:
+                    processed_response["tool_calls"].append({
+                        "name": tool_call.function.name,
+                        "arguments": json.loads(tool_call.function.arguments)
+                    })
+            
+            return processed_response
+        else:
+            return response.choices[0].message.content
 
     def generate_response(
         self,
@@ -37,4 +66,4 @@ class TogetherLLM(LLMBase):
             params["tool_choice"] = tool_choice
 
         response = self.client.chat.completions.create(**params)
-        return response
+        return self._parse_response(response, tools)

+ 3 - 5
mem0/memory/main.py

@@ -149,7 +149,6 @@ class Memory(MemoryBase):
                 {"role": "user", "content": prompt},
             ]
         )
-        extracted_memories = extracted_memories.choices[0].message.content
         existing_memories = self.vector_store.search(
             name=self.collection_name,
             query=embeddings,
@@ -176,8 +175,7 @@ class Memory(MemoryBase):
         # Add tools for noop, add, update, delete memory.
         tools = [ADD_MEMORY_TOOL, UPDATE_MEMORY_TOOL, DELETE_MEMORY_TOOL]
         response = self.llm.generate_response(messages=messages, tools=tools)
-        response_message = response.choices[0].message
-        tool_calls = response_message.tool_calls
+        tool_calls = response["tool_calls"]
 
         response = []
         if tool_calls:
@@ -188,9 +186,9 @@ class Memory(MemoryBase):
                 "delete_memory": self._delete_memory_tool,
             }
             for tool_call in tool_calls:
-                function_name = tool_call.function.name
+                function_name = tool_call["name"]
                 function_to_call = available_functions[function_name]
-                function_args = json.loads(tool_call.function.arguments)
+                function_args = tool_call["arguments"]
                 logging.info(
                     f"[openai_func] func: {function_name}, args: {function_args}"
                 )

+ 2 - 1
mem0/utils/factory.py

@@ -12,7 +12,8 @@ class LlmFactory:
         "ollama": "mem0.llms.ollama.py.OllamaLLM",
         "openai": "mem0.llms.openai.OpenAILLM",
         "groq": "mem0.llms.groq.GroqLLM",
-        "together": "mem0.llms.together.TogetherLLM"
+        "together": "mem0.llms.together.TogetherLLM",
+        "aws_bedrock": "mem0.llms.aws_bedrock.AWSBedrockLLM"
     }
 
     @classmethod

+ 86 - 1
poetry.lock

@@ -227,6 +227,47 @@ files = [
     {file = "backoff-2.2.1.tar.gz", hash = "sha256:03f829f5bb1923180821643f8753b0502c3b682293992485b0eef2807afa5cba"},
 ]
 
+[[package]]
+name = "boto3"
+version = "1.34.144"
+description = "The AWS SDK for Python"
+optional = false
+python-versions = ">=3.8"
+files = [
+    {file = "boto3-1.34.144-py3-none-any.whl", hash = "sha256:b8433d481d50b68a0162c0379c0dd4aabfc3d1ad901800beb5b87815997511c1"},
+    {file = "boto3-1.34.144.tar.gz", hash = "sha256:2f3e88b10b8fcc5f6100a9d74cd28230edc9d4fa226d99dd40a3ab38ac213673"},
+]
+
+[package.dependencies]
+botocore = ">=1.34.144,<1.35.0"
+jmespath = ">=0.7.1,<2.0.0"
+s3transfer = ">=0.10.0,<0.11.0"
+
+[package.extras]
+crt = ["botocore[crt] (>=1.21.0,<2.0a0)"]
+
+[[package]]
+name = "botocore"
+version = "1.34.144"
+description = "Low-level, data-driven core of boto 3."
+optional = false
+python-versions = ">=3.8"
+files = [
+    {file = "botocore-1.34.144-py3-none-any.whl", hash = "sha256:a2cf26e1bf10d5917a2285e50257bc44e94a1d16574f282f3274f7a5d8d1f08b"},
+    {file = "botocore-1.34.144.tar.gz", hash = "sha256:4215db28d25309d59c99507f1f77df9089e5bebbad35f6e19c7c44ec5383a3e8"},
+]
+
+[package.dependencies]
+jmespath = ">=0.7.1,<2.0.0"
+python-dateutil = ">=2.1,<3.0.0"
+urllib3 = [
+    {version = ">=1.25.4,<1.27", markers = "python_version < \"3.10\""},
+    {version = ">=1.25.4,<2.2.0 || >2.2.0,<3", markers = "python_version >= \"3.10\""},
+]
+
+[package.extras]
+crt = ["awscrt (==0.20.11)"]
+
 [[package]]
 name = "certifi"
 version = "2024.7.4"
@@ -1017,6 +1058,17 @@ docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alab
 qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"]
 testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"]
 
+[[package]]
+name = "jmespath"
+version = "1.0.1"
+description = "JSON Matching Expressions"
+optional = false
+python-versions = ">=3.7"
+files = [
+    {file = "jmespath-1.0.1-py3-none-any.whl", hash = "sha256:02e2e4cc71b5bcab88332eebf907519190dd9e6e82107fa7f83b1003a6252980"},
+    {file = "jmespath-1.0.1.tar.gz", hash = "sha256:90261b206d6defd58fdd5e85f478bf633a2901798906be2ad389150c5c60edbe"},
+]
+
 [[package]]
 name = "jupyter-client"
 version = "8.6.2"
@@ -2105,6 +2157,23 @@ files = [
     {file = "ruff-0.4.10.tar.gz", hash = "sha256:3aa4f2bc388a30d346c56524f7cacca85945ba124945fe489952aadb6b5cd804"},
 ]
 
+[[package]]
+name = "s3transfer"
+version = "0.10.2"
+description = "An Amazon S3 Transfer Manager"
+optional = false
+python-versions = ">=3.8"
+files = [
+    {file = "s3transfer-0.10.2-py3-none-any.whl", hash = "sha256:eca1c20de70a39daee580aef4986996620f365c4e0fda6a86100231d62f1bf69"},
+    {file = "s3transfer-0.10.2.tar.gz", hash = "sha256:0711534e9356d3cc692fdde846b4a1e4b0cb6519971860796e6bc4c7aea00ef6"},
+]
+
+[package.dependencies]
+botocore = ">=1.33.2,<2.0a.0"
+
+[package.extras]
+crt = ["botocore[crt] (>=1.33.2,<2.0a.0)"]
+
 [[package]]
 name = "setuptools"
 version = "70.3.0"
@@ -2308,6 +2377,22 @@ files = [
     {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"},
 ]
 
+[[package]]
+name = "urllib3"
+version = "1.26.19"
+description = "HTTP library with thread-safe connection pooling, file post, and more."
+optional = false
+python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7"
+files = [
+    {file = "urllib3-1.26.19-py2.py3-none-any.whl", hash = "sha256:37a0344459b199fce0e80b0d3569837ec6b6937435c5244e7fd73fa6006830f3"},
+    {file = "urllib3-1.26.19.tar.gz", hash = "sha256:3e3d753a8618b86d7de333b4223005f68720bcd6a7d2bcb9fbd2229ec7c1e429"},
+]
+
+[package.extras]
+brotli = ["brotli (==1.0.9)", "brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotlipy (>=0.6.0)"]
+secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "ipaddress", "pyOpenSSL (>=0.14)", "urllib3-secure-extra"]
+socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"]
+
 [[package]]
 name = "urllib3"
 version = "2.2.2"
@@ -2457,4 +2542,4 @@ test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools",
 [metadata]
 lock-version = "2.0"
 python-versions = "^3.8"
-content-hash = "29b68f540e0567d310cbf2f8f3137a0bbd7ecaefeaafc95273d1bdaddfeac1bd"
+content-hash = "619f45c245c60ed6e534c177eeb6e1335d515e8b17ae760f867abc1d611258c5"

+ 1 - 0
pyproject.toml

@@ -22,6 +22,7 @@ openai = "^1.33.0"
 posthog = "^3.5.0"
 groq = "^0.9.0"
 together = "^1.2.1"
+boto3 = "^1.34.144"
 
 [tool.poetry.group.test.dependencies]
 pytest = "^8.2.2"

+ 15 - 3
tests/llms/test_groq.py

@@ -27,7 +27,7 @@ def test_generate_response_without_tools(mock_groq_client):
         model="llama3-70b-8192",
         messages=messages
     )
-    assert response.choices[0].message.content == "I'm doing well, thank you for asking!"
+    assert response == "I'm doing well, thank you for asking!"
 
 
 def test_generate_response_with_tools(mock_groq_client):
@@ -54,7 +54,15 @@ def test_generate_response_with_tools(mock_groq_client):
     ]
     
     mock_response = Mock()
-    mock_response.choices = [Mock(message=Mock(content="Memory added successfully."))]
+    mock_message = Mock()
+    mock_message.content = "I've added the memory for you."
+    
+    mock_tool_call = Mock()
+    mock_tool_call.function.name = "add_memory"
+    mock_tool_call.function.arguments = '{"data": "Today is a sunny day."}'
+    
+    mock_message.tool_calls = [mock_tool_call]
+    mock_response.choices = [Mock(message=mock_message)]
     mock_groq_client.chat.completions.create.return_value = mock_response
 
     response = llm.generate_response(messages, tools=tools)
@@ -65,5 +73,9 @@ def test_generate_response_with_tools(mock_groq_client):
         tools=tools,
         tool_choice="auto"
     )
-    assert response.choices[0].message.content == "Memory added successfully."
+    
+    assert response["content"] == "I've added the memory for you."
+    assert len(response["tool_calls"]) == 1
+    assert response["tool_calls"][0]["name"] == "add_memory"
+    assert response["tool_calls"][0]["arguments"] == {'data': 'Today is a sunny day.'}
     

+ 15 - 3
tests/llms/test_openai.py

@@ -27,7 +27,7 @@ def test_generate_response_without_tools(mock_openai_client):
         model="gpt-4o",
         messages=messages
     )
-    assert response.choices[0].message.content == "I'm doing well, thank you for asking!"
+    assert response == "I'm doing well, thank you for asking!"
     
 
 def test_generate_response_with_tools(mock_openai_client):
@@ -54,7 +54,15 @@ def test_generate_response_with_tools(mock_openai_client):
     ]
     
     mock_response = Mock()
-    mock_response.choices = [Mock(message=Mock(content="Memory added successfully."))]
+    mock_message = Mock()
+    mock_message.content = "I've added the memory for you."
+    
+    mock_tool_call = Mock()
+    mock_tool_call.function.name = "add_memory"
+    mock_tool_call.function.arguments = '{"data": "Today is a sunny day."}'
+    
+    mock_message.tool_calls = [mock_tool_call]
+    mock_response.choices = [Mock(message=mock_message)]
     mock_openai_client.chat.completions.create.return_value = mock_response
 
     response = llm.generate_response(messages, tools=tools)
@@ -65,5 +73,9 @@ def test_generate_response_with_tools(mock_openai_client):
         tools=tools,
         tool_choice="auto"
     )
-    assert response.choices[0].message.content == "Memory added successfully."
+    
+    assert response["content"] == "I've added the memory for you."
+    assert len(response["tool_calls"]) == 1
+    assert response["tool_calls"][0]["name"] == "add_memory"
+    assert response["tool_calls"][0]["arguments"] == {'data': 'Today is a sunny day.'}
     

+ 15 - 3
tests/llms/test_together.py

@@ -27,7 +27,7 @@ def test_generate_response_without_tools(mock_together_client):
         model="mistralai/Mixtral-8x7B-Instruct-v0.1",
         messages=messages
     )
-    assert response.choices[0].message.content == "I'm doing well, thank you for asking!"
+    assert response == "I'm doing well, thank you for asking!"
 
 
 def test_generate_response_with_tools(mock_together_client):
@@ -54,7 +54,15 @@ def test_generate_response_with_tools(mock_together_client):
     ]
     
     mock_response = Mock()
-    mock_response.choices = [Mock(message=Mock(content="Memory added successfully."))]
+    mock_message = Mock()
+    mock_message.content = "I've added the memory for you."
+    
+    mock_tool_call = Mock()
+    mock_tool_call.function.name = "add_memory"
+    mock_tool_call.function.arguments = '{"data": "Today is a sunny day."}'
+    
+    mock_message.tool_calls = [mock_tool_call]
+    mock_response.choices = [Mock(message=mock_message)]
     mock_together_client.chat.completions.create.return_value = mock_response
 
     response = llm.generate_response(messages, tools=tools)
@@ -65,5 +73,9 @@ def test_generate_response_with_tools(mock_together_client):
         tools=tools,
         tool_choice="auto"
     )
-    assert response.choices[0].message.content == "Memory added successfully."
+    
+    assert response["content"] == "I've added the memory for you."
+    assert len(response["tool_calls"]) == 1
+    assert response["tool_calls"][0]["name"] == "add_memory"
+    assert response["tool_calls"][0]["arguments"] == {'data': 'Today is a sunny day.'}