Explorar o código

Improve docs. (#1096)

Taranjeet Singh hai 1 ano
pai
achega
27236bd1b2

+ 12 - 0
docs/components/introduction.mdx

@@ -0,0 +1,12 @@
+---
+title: 🧩 Introduction
+---
+
+## Overview
+
+You can configure following components
+
+* [Data Source](/components/data-sources/overview)
+* [LLM](/components/llms)
+* [Embedding Model](/components/embedding-models)
+* [Vector Database](/components/vector-databases)

+ 73 - 59
docs/get-started/quickstart.mdx

@@ -1,68 +1,82 @@
 ---
 title: '⚡ Quickstart'
-description: '💡 Start building ChatGPT like apps in a minute on your own data'
+description: '💡 Create a RAG app on your own data in a minute'
 ---
 
-Install python package:
+## Installation
+
+First install the python package.
 
 ```bash
 pip install embedchain
 ```
 
-Creating an app involves 3 steps:
-
-<Steps>
-  <Step title="⚙️ Import app instance">
-    ```python
-    from embedchain import App
-    app = App()
-    ```
-    <Accordion title="Customize your app by a simple YAML config" icon="gear-complex">
-      Embedchain provides a wide range of options to customize your app. You can customize the model, data sources, and much more.
-      Explore the custom configurations [here](https://docs.embedchain.ai/advanced/configuration).
-      <CodeGroup>
-      ```python yaml_app.py
-      from embedchain import App
-      app = App.from_config(config_path="config.yaml")
-      ```
-      ```python json_app.py
-      from embedchain import App
-      app = App.from_config(config_path="config.json")
-      ```
-      ```python app.py
-      from embedchain import App
-      config = {} # Add your config here
-      app = App.from_config(config=config)
-      ```
-      </CodeGroup>
-    </Accordion>
-  </Step>
-  <Step title="🗃️ Add data sources">
-    ```python
-    app.add("https://en.wikipedia.org/wiki/Elon_Musk")
-    app.add("https://www.forbes.com/profile/elon-musk")
-    # app.add("path/to/file/elon_musk.pdf")
-    ```
-    <Accordion title="Embedchain supports adding data from many data sources." icon="files">
-      Embedchain supports adding data from many data sources including web pages, PDFs, databases, and more.
-      Explore the list of supported [data sources](https://docs.embedchain.ai/data-sources/overview).
-    </Accordion>
-  </Step>
-  <Step title="💬 Ask questions, chat, or search through your data with ease">
-    ```python
-    app.query("What is the net worth of Elon Musk today?")
-    # Answer: The net worth of Elon Musk today is $258.7 billion.
-    ```
-    <hr />
-    <Accordion title="Want to chat with your app?" icon="face-thinking">
-      Embedchain provides a wide range of features to interact with your app. You can chat with your app, ask questions, search through your data, and much more.
-      ```python
-      app.chat("How many companies does Elon Musk run? Name those")
-      # Answer: Elon Musk runs 3 companies: Tesla, SpaceX, and Neuralink.
-      app.chat("What is his net worth today?")
-      # Answer: The net worth of Elon Musk today is $258.7 billion.
-      ```
-      To learn about other features, click [here](https://docs.embedchain.ai/get-started/introduction)
-    </Accordion>
-  </Step>
-</Steps>
+Once you have installed the package, depending upon your preference you can either use:
+
+<CardGroup cols={2}>
+  <Card title="Open Source Models" icon="osi" href="#open-source-models">
+  This includes Open source LLMs like Mistral, Llama, etc.<br/>
+  Free to use, and runs locally on your machine.
+  </Card>
+  <Card title="Paid Models" icon="dollar-sign" href="#paid-models" color="#4A154B">
+    This includes paid LLMs like GPT 4, Claude, etc.<br/>
+    Cost money and are accessible via an API.
+  </Card>
+</CardGroup>
+
+## Open Source Models
+
+This section gives a quickstart example of using Mistral as the Open source LLM and Sentence transformers as the Open source embedding model. These models are free and run mostly on your local machine.
+
+We are using Mistral hosted at Hugging Face, so will you need a Hugging Face token to run this example. Its *free* and you can create one [here](https://huggingface.co/docs/hub/security-tokens).
+
+<CodeGroup>
+```python quickstart.py
+import os
+# replace this with your HF key
+os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "hf_xxxx"
+
+from embedchain import App
+app = App.from_config("mistral.yaml")
+app.add("https://www.forbes.com/profile/elon-musk")
+app.add("https://en.wikipedia.org/wiki/Elon_Musk")
+app.query("What is the net worth of Elon Musk today?")
+# Answer: The net worth of Elon Musk today is $258.7 billion.
+```
+```yaml mistral.yaml
+llm:
+  provider: huggingface
+  config:
+    model: 'mistralai/Mistral-7B-v0.1'
+embedder:
+  provider: huggingface
+  config:
+    model: 'sentence-transformers/all-mpnet-base-v2'
+```
+</CodeGroup>
+
+## Paid Models
+
+In this section, we will use both LLM and embedding model from OpenAI.
+
+```python quickstart.py
+import os
+# replace this with your OpenAI key
+os.environ["OPENAI_API_KEY"] = "sk-xxxx"
+
+from embedchain import App
+app = App()
+app.add("https://www.forbes.com/profile/elon-musk")
+app.add("https://en.wikipedia.org/wiki/Elon_Musk")
+app.query("What is the net worth of Elon Musk today?")
+# Answer: The net worth of Elon Musk today is $258.7 billion.
+```
+
+# Next Steps
+
+Now that you have created your first app, you can follow any of the links:
+
+* [Introduction](/get-started/introduction)
+* [Customization](/components/introduction)
+* [Use cases](/use-cases/introduction)
+* [Deployment](/get-started/deployment)

+ 10 - 0
docs/logo/dark-rt.svg

@@ -0,0 +1,10 @@
+<svg width="1371" height="249" viewBox="0 0 1371 249" fill="none" xmlns="http://www.w3.org/2000/svg">
+<path fill-rule="evenodd" clip-rule="evenodd" d="M66.248 1V248.8H158.996V210.214H120.41V148.264H158.996V101.89H120.41V39.94H158.996V1H66.248ZM169.655 1V248.8H223.817V124.9L246.827 248.8H262.403L285.767 124.9V248.8H339.929V1H277.979L254.615 148.264L231.251 1H169.655ZM404.661 210.214V148.264H412.449C416.697 148.264 419.883 151.804 419.883 156.052V202.426C419.883 206.674 416.697 210.214 412.449 210.214H404.661ZM443.955 125.254L443.247 124.9C460.239 124.9 474.399 111.094 474.399 94.102V32.152C474.399 15.16 460.239 1 443.247 1H350.499V248.8H443.247C460.239 248.8 474.399 234.994 474.399 218.002V156.052C474.399 139.06 460.947 125.608 443.955 125.254ZM412.449 101.89H404.661V39.94H412.449C416.697 39.94 419.883 43.48 419.883 47.728V94.102C419.883 98.35 416.697 101.89 412.449 101.89ZM577.421 1H484.673V248.8H577.421V210.214H538.835V148.264H577.421V101.89H538.835V39.94H577.421V1ZM642.242 210.214V39.94H649.676C654.278 39.94 657.464 43.48 657.464 47.728V202.426C657.464 206.674 654.278 210.214 649.676 210.214H642.242ZM711.98 218.002V32.152C711.98 15.16 697.82 1 680.828 1H588.08V248.8H680.828C697.82 248.8 711.98 234.994 711.98 218.002ZM88 164.8H70V182.8H88V164.8Z" fill="white"/>
+<rect x="17" y="164.8" width="18" height="18" fill="white"/>
+<rect y="141.8" width="11" height="18" fill="white"/>
+<rect x="26" y="64.7998" width="30" height="30" fill="white"/>
+<rect x="1334.52" y="90.3779" width="26.6955" height="26.6955" fill="white"/>
+<rect x="1360.32" y="133.091" width="10.6782" height="16.0173" fill="white"/>
+<rect x="1334.52" y="148.219" width="16.0173" height="16.0173" fill="white"/>
+<path fill-rule="evenodd" clip-rule="evenodd" d="M723 217.646V31.2444C723 14.202 736.847 0 753.889 0H816.023C833.066 0 847.268 14.202 847.268 31.2444V85.5672H792.59V46.8667C792.59 42.6061 789.394 39.0556 784.779 39.0556C780.518 39.0556 777.323 42.6061 777.323 46.8667V202.024C777.323 206.284 780.518 209.835 784.779 209.835C789.394 209.835 792.59 206.284 792.59 202.024V163.323H847.268V217.646C847.268 234.688 833.066 248.535 816.023 248.535H753.889C736.847 248.535 723 234.688 723 217.646ZM856.144 248.535V0H910.467V101.189H925.734V0H980.057V248.535H925.734V147.701H910.467V248.535H856.144ZM1066.34 248.535L1062.79 209.835H1039.36L1035.45 248.535H988.941L1019.83 0H1081.96L1113.21 248.535H1066.34ZM1043.62 163.323H1058.18L1050.72 85.5672L1043.62 163.323ZM1176.06 248.535H1121.74V0H1176.06V248.535ZM1184.84 248.535V0H1239.17L1262.24 124.268V0H1308.76V75.2506H1302.48V101.946H1308.76V153.557H1294.47V169.575H1308.76V248.535H1254.43L1231.35 124.268V248.535H1184.84Z" fill="white"/>
+</svg>

+ 10 - 0
docs/logo/light-rt.svg

@@ -0,0 +1,10 @@
+<svg width="1371" height="249" viewBox="0 0 1371 249" fill="none" xmlns="http://www.w3.org/2000/svg">
+<path fill-rule="evenodd" clip-rule="evenodd" d="M66.248 1V248.8H158.996V210.214H120.41V148.264H158.996V101.89H120.41V39.94H158.996V1H66.248ZM169.655 1V248.8H223.817V124.9L246.827 248.8H262.403L285.767 124.9V248.8H339.929V1H277.979L254.615 148.264L231.251 1H169.655ZM404.661 210.214V148.264H412.449C416.697 148.264 419.883 151.804 419.883 156.052V202.426C419.883 206.674 416.697 210.214 412.449 210.214H404.661ZM443.955 125.254L443.247 124.9C460.239 124.9 474.399 111.094 474.399 94.102V32.152C474.399 15.16 460.239 1 443.247 1H350.499V248.8H443.247C460.239 248.8 474.399 234.994 474.399 218.002V156.052C474.399 139.06 460.947 125.608 443.955 125.254ZM412.449 101.89H404.661V39.94H412.449C416.697 39.94 419.883 43.48 419.883 47.728V94.102C419.883 98.35 416.697 101.89 412.449 101.89ZM577.421 1H484.673V248.8H577.421V210.214H538.835V148.264H577.421V101.89H538.835V39.94H577.421V1ZM642.242 210.214V39.94H649.676C654.278 39.94 657.464 43.48 657.464 47.728V202.426C657.464 206.674 654.278 210.214 649.676 210.214H642.242ZM711.98 218.002V32.152C711.98 15.16 697.82 1 680.828 1H588.08V248.8H680.828C697.82 248.8 711.98 234.994 711.98 218.002ZM88 164.8H70V182.8H88V164.8Z" fill="#2A2B4C"/>
+<rect x="17" y="164.8" width="18" height="18" fill="#2A2B4C"/>
+<rect y="141.8" width="11" height="18" fill="#2A2B4C"/>
+<rect x="26" y="64.7998" width="30" height="30" fill="#2A2B4C"/>
+<rect x="1334.52" y="90.3779" width="26.6955" height="26.6955" fill="#2A2B4C"/>
+<rect x="1360.32" y="133.091" width="10.6782" height="16.0173" fill="#2A2B4C"/>
+<rect x="1334.52" y="148.219" width="16.0173" height="16.0173" fill="#2A2B4C"/>
+<path fill-rule="evenodd" clip-rule="evenodd" d="M723 217.646V31.2444C723 14.202 736.847 0 753.889 0H816.023C833.066 0 847.268 14.202 847.268 31.2444V85.5672H792.59V46.8667C792.59 42.6061 789.394 39.0556 784.779 39.0556C780.518 39.0556 777.323 42.6061 777.323 46.8667V202.024C777.323 206.284 780.518 209.835 784.779 209.835C789.394 209.835 792.59 206.284 792.59 202.024V163.323H847.268V217.646C847.268 234.688 833.066 248.535 816.023 248.535H753.889C736.847 248.535 723 234.688 723 217.646ZM856.144 248.535V0H910.467V101.189H925.734V0H980.057V248.535H925.734V147.701H910.467V248.535H856.144ZM1066.34 248.535L1062.79 209.835H1039.36L1035.45 248.535H988.941L1019.83 0H1081.96L1113.21 248.535H1066.34ZM1043.62 163.323H1058.18L1050.72 85.5672L1043.62 163.323ZM1176.06 248.535H1121.74V0H1176.06V248.535ZM1184.84 248.535V0H1239.17L1262.24 124.268V0H1308.76V75.2506H1302.48V101.946H1308.76V153.557H1294.47V169.575H1308.76V248.535H1254.43L1231.35 124.268V248.535H1184.84Z" fill="#2A2B4C"/>
+</svg>

+ 26 - 30
docs/mint.json

@@ -2,8 +2,8 @@
   "$schema": "https://mintlify.com/schema.json",
   "name": "Embedchain",
   "logo": {
-    "dark": "/logo/dark.svg",
-    "light": "/logo/light.svg",
+    "dark": "/logo/dark-rt.svg",
+    "light": "/logo/light-rt.svg",
     "href": "https://github.com/embedchain/embedchain"
   },
   "favicon": "/favicon.png",
@@ -41,16 +41,6 @@
       "name": "Talk to founders",
       "icon": "calendar",
       "url": "https://cal.com/taranjeetio/ec"
-    },
-    {
-      "name": "Join our slack",
-      "icon": "slack",
-      "url": "https://join.slack.com/t/embedchain/shared_invite/zt-22uwz3c46-Zg7cIh5rOBteT_xe1jwLDw"
-    },
-    {
-      "name": "Join our discord",
-      "icon": "discord",
-      "url": "https://discord.gg/CUU9FPhRNt"
     }
   ],
   "topbarLinks": [
@@ -61,7 +51,7 @@
   ],
   "topbarCtaButton": {
     "name": "Join our slack",
-    "url": "https://join.slack.com/t/embedchain/shared_invite/zt-22uwz3c46-Zg7cIh5rOBteT_xe1jwLDw"
+    "url": "https://embedchain.ai/slack"
   },
   "primaryTab": {
     "name": "Documentation"
@@ -70,35 +60,23 @@
     {
       "group": "Get Started",
       "pages": [
-        "get-started/introduction",
         "get-started/quickstart",
+        "get-started/introduction",
+        "get-started/faq",
         {
-        "group": "🔗 Integrations",
+          "group": "🔗 Integrations",
           "pages": [
             "integration/langsmith",
             "integration/chainlit",
             "integration/streamlit-mistral"
           ]
-        },
-        "get-started/faq"
-      ]
-    },
-    {
-      "group": "Deployment",
-      "pages": [
-        "get-started/deployment",
-        "deployment/fly_io",
-        "deployment/modal_com",
-        "deployment/render_com",
-        "deployment/streamlit_io",
-        "deployment/gradio_app",
-        "deployment/huggingface_spaces",
-        "deployment/embedchain_ai"
+        }
       ]
     },
     {
       "group": "Use cases",
       "pages": [
+        "use-cases/introduction",
         "use-cases/chatbots",
         "use-cases/question-answering",
         "use-cases/semantic-search"
@@ -107,9 +85,11 @@
     {
       "group": "Components",
       "pages": [
+        "components/introduction",
         {
           "group": "Data sources",
           "pages": [
+
             "components/data-sources/overview",
             {
               "group": "Data types",
@@ -143,6 +123,19 @@
         "components/embedding-models"
       ]
     },
+    {
+      "group": "Deployment",
+      "pages": [
+        "get-started/deployment",
+        "deployment/fly_io",
+        "deployment/modal_com",
+        "deployment/render_com",
+        "deployment/streamlit_io",
+        "deployment/gradio_app",
+        "deployment/huggingface_spaces",
+        "deployment/embedchain_ai"
+      ]
+    },
     {
       "group": "Community",
       "pages": [
@@ -240,6 +233,9 @@
     "posthog": {
       "apiKey": "phc_PHQDA5KwztijnSojsxJ2c1DuJd52QCzJzT2xnSGvjN2",
       "apiHost": "https://app.embedchain.ai/ingest"
+    },
+    "ga4": {
+      "measurementId": "G-4QK7FJE6T3"
     }
   },
   "feedback": {

+ 1 - 1
docs/use-cases/chatbots.mdx

@@ -1,5 +1,5 @@
 ---
-title: 'Chatbots'
+title: '🤖 Chatbots'
 ---
 
 Chatbots, especially those powered by Large Language Models (LLMs), have a wide range of use cases, significantly enhancing various aspects of business, education, and personal assistance. Here are some key applications:

+ 11 - 0
docs/use-cases/introduction.mdx

@@ -0,0 +1,11 @@
+---
+title: 🧱 Introduction
+---
+
+## Overview
+
+You can use embedchain to create the following usecases:
+
+* [Chatbots](/use-cases/chatbots)
+* [Question Answering](/use-cases/question-answering)
+* [Semantic Search](/use-cases/semantic-search)

+ 1 - 1
docs/use-cases/question-answering.mdx

@@ -1,5 +1,5 @@
 ---
-title: 'Question Answering'
+title: 'Question Answering'
 ---
 
 Utilizing large language models (LLMs) for question answering is a transformative application, bringing significant benefits to various real-world situations. Embedchain extensively supports tasks related to question answering, including summarization, content creation, language translation, and data analysis. The versatility of question answering with LLMs enables solutions for numerous practical applications such as:

+ 4 - 0
docs/use-cases/semantic-search.mdx

@@ -1,3 +1,7 @@
+---
+title: '🔍 Semantic Search'
+---
+
 Semantic searching, which involves understanding the intent and contextual meaning behind search queries, is yet another popular use-case of RAG. It has several popular use cases across various domains:
 
 - **Information Retrieval**: Enhances search accuracy in databases and websites