|
@@ -19,6 +19,7 @@ embedchain is a framework to easily create LLM powered bots over any dataset. If
|
|
|
- [2. OpenSourceApp (uses opensource models, free)](#2-opensourceapp-uses-opensource-models-free)
|
|
|
- [3. PersonApp (uses OpenAI models, paid)](#3-personapp-uses-openai-models-paid)
|
|
|
- [Add Dataset](#add-dataset)
|
|
|
+ - [Metadata](#metadata)
|
|
|
- [Interface Types](#interface-types)
|
|
|
- [Query Interface](#query-interface)
|
|
|
- [Chat Interface](#chat-interface)
|
|
@@ -194,7 +195,23 @@ from embedchain import App as ECApp
|
|
|
from embedchain import OpenSourceApp as ECOSApp
|
|
|
from embedchain import PersonApp as ECPApp
|
|
|
```
|
|
|
+### Metadata
|
|
|
|
|
|
+- You can also add metadata to your datasets by passing a `metadata` parameter in the `.add` or `.add_local` function.
|
|
|
+
|
|
|
+```python
|
|
|
+metadata = {
|
|
|
+ 'author': 'John Doe',
|
|
|
+ 'category': 'Sample Data',
|
|
|
+ 'date': '2023-07-15',
|
|
|
+ 'source': 'Data Repository',
|
|
|
+ 'description': 'This is an example dataset for testing purposes.'
|
|
|
+}
|
|
|
+
|
|
|
+naval_chat_bot.add("youtube_video", "https://www.youtube.com/watch?v=3qHkcs3kG44", metadata=metadata)
|
|
|
+```
|
|
|
+
|
|
|
+- The `metadata` parameter expects a dictionary object where the keys represent metadata attributes, and the values represent corresponding metadata values
|
|
|
## Interface Types
|
|
|
|
|
|
### Query Interface
|