Bläddra i källkod

feature: Add support for zilliz vector database (#771)

LuciAkirami 1 år sedan
förälder
incheckning
d6ed2050d4

+ 3 - 0
Makefile

@@ -18,6 +18,9 @@ install_es:
 install_opensearch:
 	poetry install --extras opensearch
 
+install_milvus:
+	poetry install --extras milvus
+	
 shell:
 	poetry shell
 

+ 1 - 0
embedchain/config/__init__.py

@@ -12,3 +12,4 @@ from .llm.base_llm_config import BaseLlmConfig as LlmConfig
 from .vectordb.chroma import ChromaDbConfig
 from .vectordb.elasticsearch import ElasticsearchDBConfig
 from .vectordb.opensearch import OpenSearchDBConfig
+from .vectordb.zilliz import ZillizDBConfig

+ 49 - 0
embedchain/config/vectordb/zilliz.py

@@ -0,0 +1,49 @@
+import os
+from typing import Optional
+
+from embedchain.config.vectordb.base import BaseVectorDbConfig
+from embedchain.helper.json_serializable import register_deserializable
+
+
+@register_deserializable
+class ZillizDBConfig(BaseVectorDbConfig):
+    def __init__(
+        self,
+        collection_name: Optional[str] = None,
+        dir: Optional[str] = None,
+        uri: Optional[str] = None,
+        token: Optional[str] = None,
+        vector_dim: Optional[str] = None,
+        metric_type: Optional[str] = None,
+    ):
+        """
+        Initializes a configuration class instance for the vector database.
+
+        :param collection_name: Default name for the collection, defaults to None
+        :type collection_name: Optional[str], optional
+        :param dir: Path to the database directory, where the database is stored, defaults to "db"
+        :type dir: str, optional
+        :param uri: Cluster endpoint obtained from the Zilliz Console, defaults to None
+        :type uri: Optional[str], optional
+        :param token: API Key, if a Serverless Cluster, username:password, if a Dedicated Cluster, defaults to None
+        :type port: Optional[str], optional
+        """
+        self.uri = uri or os.environ.get("ZILLIZ_CLOUD_URI")
+        if not self.uri:
+            raise AttributeError(
+                "Zilliz needs a URI attribute, "
+                "this can either be passed to `ZILLIZ_CLOUD_URI` or as `ZILLIZ_CLOUD_URI` in `.env`"
+            )
+
+        self.token = token or os.environ.get("ZILLIZ_CLOUD_TOKEN")
+        if not self.token:
+            raise AttributeError(
+                "Zilliz needs a token attribute, "
+                "this can either be passed to `ZILLIZ_CLOUD_TOKEN` or as `ZILLIZ_CLOUD_TOKEN` in `.env`,"
+                "if having a username and password, pass it in the form 'username:password' to `ZILLIZ_CLOUD_TOKEN`"
+            )
+
+        self.metric_type = metric_type if metric_type else "L2"
+
+        self.vector_dim = vector_dim
+        super().__init__(collection_name=collection_name, dir=dir)

+ 1 - 0
embedchain/models/vector_databases.py

@@ -5,3 +5,4 @@ class VectorDatabases(Enum):
     CHROMADB = "CHROMADB"
     ELASTICSEARCH = "ELASTICSEARCH"
     OPENSEARCH = "OPENSEARCH"
+    ZILLIZ = "ZILLIZ"

+ 205 - 0
embedchain/vectordb/zilliz.py

@@ -0,0 +1,205 @@
+from typing import Dict, List, Optional
+
+from embedchain.config import ZillizDBConfig
+from embedchain.helper.json_serializable import register_deserializable
+from embedchain.vectordb.base import BaseVectorDB
+
+try:
+    from pymilvus import MilvusClient
+    from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility
+except ImportError:
+    raise ImportError(
+        "Zilliz requires extra dependencies. Install with `pip install --upgrade embedchain[milvus]`"
+    ) from None
+
+
+@register_deserializable
+class ZillizVectorDB(BaseVectorDB):
+    """Base class for vector database."""
+
+    def __init__(self, config: ZillizDBConfig = None):
+        """Initialize the database. Save the config and client as an attribute.
+
+        :param config: Database configuration class instance.
+        :type config: ZillizDBConfig
+        """
+
+        if config is None:
+            self.config = ZillizDBConfig()
+        else:
+            self.config = config
+
+        self.client = MilvusClient(
+            uri=self.config.uri,
+            token=self.config.token,
+        )
+
+        self.connection = connections.connect(
+            uri=self.config.uri,
+            token=self.config.token,
+        )
+
+        super().__init__(config=self.config)
+
+    def _initialize(self):
+        """
+        This method is needed because `embedder` attribute needs to be set externally before it can be initialized.
+
+        So it's can't be done in __init__ in one step.
+        """
+        self._get_or_create_collection(self.config.collection_name)
+
+    def _get_or_create_db(self):
+        """Get or create the database."""
+        return self.client
+
+    def _get_or_create_collection(self, name):
+        """
+        Get or create a named collection.
+
+        :param name: Name of the collection
+        :type name: str
+        """
+        if utility.has_collection(name):
+            self.collection = Collection(name)
+        else:
+            fields = [
+                FieldSchema(name="id", dtype=DataType.VARCHAR, is_primary=True, max_length=512),
+                FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=2048),
+                FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=self.embedder.vector_dimension),
+            ]
+
+            schema = CollectionSchema(fields, enable_dynamic_field=True)
+            self.collection = Collection(name=name, schema=schema)
+
+            index = {
+                "index_type": "AUTOINDEX",
+                "metric_type": self.config.metric_type,
+            }
+            self.collection.create_index("embeddings", index)
+        return self.collection
+
+    def get(self, ids: Optional[List[str]] = None, where: Optional[Dict[str, any]] = None, limit: Optional[int] = None):
+        """
+        Get existing doc ids present in vector database
+
+        :param ids: list of doc ids to check for existence
+        :type ids: List[str]
+        :param where: Optional. to filter data
+        :type where: Dict[str, Any]
+        :param limit: Optional. maximum number of documents
+        :type limit: Optional[int]
+        :return: Existing documents.
+        :rtype: Set[str]
+        """
+        if ids is None or len(ids) == 0 or self.collection.num_entities == 0:
+            return {"ids": []}
+
+        if not (self.collection.is_empty):
+            filter = f"id in {ids}"
+            results = self.client.query(
+                collection_name=self.config.collection_name, filter=filter, output_fields=["id"]
+            )
+            results = [res["id"] for res in results]
+
+        return {"ids": set(results)}
+
+    def add(
+        self,
+        embeddings: List[List[float]],
+        documents: List[str],
+        metadatas: List[object],
+        ids: List[str],
+        skip_embedding: bool,
+    ):
+        """Add to database"""
+        if not skip_embedding:
+            embeddings = self.embedder.embedding_fn(documents)
+
+        for id, doc, metadata, embedding in zip(ids, documents, metadatas, embeddings):
+            data = {**metadata, "id": id, "text": doc, "embeddings": embedding}
+            self.client.insert(collection_name=self.config.collection_name, data=data)
+
+        self.collection.load()
+        self.collection.flush()
+        self.client.flush(self.config.collection_name)
+
+    def query(self, input_query: List[str], n_results: int, where: Dict[str, any], skip_embedding: bool) -> List[str]:
+        """
+        Query contents from vector data base based on vector similarity
+
+        :param input_query: list of query string
+        :type input_query: List[str]
+        :param n_results: no of similar documents to fetch from database
+        :type n_results: int
+        :param where: to filter data
+        :type where: str
+        :raises InvalidDimensionException: Dimensions do not match.
+        :return: The content of the document that matched your query.
+        :rtype: List[str]
+        """
+
+        if self.collection.is_empty:
+            return []
+
+        if not isinstance(where, str):
+            where = None
+
+        if skip_embedding:
+            query_vector = input_query
+            query_result = self.client.search(
+                collection_name=self.config.collection_name,
+                data=query_vector,
+                limit=n_results,
+                output_fields=["text"],
+            )
+
+        else:
+            input_query_vector = self.embedder.embedding_fn([input_query])
+            query_vector = input_query_vector[0]
+
+            query_result = self.client.search(
+                collection_name=self.config.collection_name,
+                data=[query_vector],
+                limit=n_results,
+                output_fields=["text"],
+            )
+
+        doc_list = []
+        for query in query_result:
+            doc_list.append(query[0]["entity"]["text"])
+
+        return doc_list
+
+    def count(self) -> int:
+        """
+        Count number of documents/chunks embedded in the database.
+
+        :return: number of documents
+        :rtype: int
+        """
+        return self.collection.num_entities
+
+    def reset(self, collection_names: List[str] = None):
+        """
+        Resets the database. Deletes all embeddings irreversibly.
+        """
+        if self.config.collection_name:
+            if collection_names:
+                for collection_name in collection_names:
+                    if collection_name in self.client.list_collections():
+                        self.client.drop_collection(collection_name=collection_name)
+            else:
+                self.client.drop_collection(collection_name=self.config.collection_name)
+                self._get_or_create_collection(self.config.collection_name)
+
+    def set_collection_name(self, name: str):
+        """
+        Set the name of the collection. A collection is an isolated space for vectors.
+
+        :param name: Name of the collection.
+        :type name: str
+        """
+        if not isinstance(name, str):
+            raise TypeError("Collection name must be a string")
+        self.config.collection_name = name

+ 2 - 0
pyproject.toml

@@ -113,6 +113,7 @@ torchvision = { version = ">=0.15.1, !=0.15.2", optional = true }
 ftfy = { version = "6.1.1", optional = true }
 regex = { version = "2023.8.8", optional = true }
 huggingface_hub = { version = "^0.17.3", optional = true }
+pymilvus = "2.3.1"
 
 [tool.poetry.group.dev.dependencies]
 black = "^23.3.0"
@@ -139,6 +140,7 @@ whatsapp = ["twilio", "flask"]
 images = ["torch", "ftfy", "regex", "pillow", "torchvision"]
 huggingface_hub=["huggingface_hub"]
 cohere = ["cohere"]
+milvus = ["pymilvus"]
 
 [tool.poetry.group.docs.dependencies]
 

+ 177 - 0
tests/vectordb/test_zilliz_db.py

@@ -0,0 +1,177 @@
+# ruff: noqa: E501
+
+import os
+
+import pytest
+from unittest import mock
+from unittest.mock import patch, Mock
+
+from embedchain.config import ZillizDBConfig
+from embedchain.vectordb.zilliz import ZillizVectorDB
+
+# to run tests, provide the URI and TOKEN in .env file
+class TestZillizVectorDBConfig:
+    @mock.patch.dict(os.environ, {"ZILLIZ_CLOUD_URI": "mocked_uri", "ZILLIZ_CLOUD_TOKEN": "mocked_token"})
+    def test_init_with_uri_and_token(self):
+        """
+        Test if the `ZillizVectorDBConfig` instance is initialized with the correct uri and token values.
+        """
+        # Create a ZillizDBConfig instance with mocked values
+        expected_uri = "mocked_uri"
+        expected_token = "mocked_token"
+        db_config = ZillizDBConfig()
+
+        # Assert that the values in the ZillizVectorDB instance match the mocked values
+        assert db_config.uri == expected_uri
+        assert db_config.token == expected_token
+
+    @mock.patch.dict(os.environ, {"ZILLIZ_CLOUD_URI": "mocked_uri", "ZILLIZ_CLOUD_TOKEN": "mocked_token"})
+    def test_init_without_uri(self):
+        """
+        Test if the `ZillizVectorDBConfig` instance throws an error when no URI found.
+        """
+        try:
+            del os.environ["ZILLIZ_CLOUD_URI"]
+        except KeyError:
+            pass
+
+        with pytest.raises(AttributeError):
+            ZillizDBConfig()
+
+    @mock.patch.dict(os.environ, {"ZILLIZ_CLOUD_URI": "mocked_uri", "ZILLIZ_CLOUD_TOKEN": "mocked_token"})
+    def test_init_without_token(self):
+        """
+        Test if the `ZillizVectorDBConfig` instance throws an error when no Token found.
+        """
+        try:
+            del os.environ["ZILLIZ_CLOUD_TOKEN"]
+        except KeyError:
+            pass
+        # Test if an exception is raised when ZILLIZ_CLOUD_TOKEN is missing
+        with pytest.raises(AttributeError):
+            ZillizDBConfig()
+
+class TestZillizVectorDB:
+    @pytest.fixture
+    @mock.patch.dict(os.environ, {"ZILLIZ_CLOUD_URI": "mocked_uri", "ZILLIZ_CLOUD_TOKEN": "mocked_token"})
+    def mock_config(self, mocker):
+        return mocker.Mock(spec=ZillizDBConfig())
+
+    @patch("embedchain.vectordb.zilliz.MilvusClient", autospec=True)
+    @patch("embedchain.vectordb.zilliz.connections.connect", autospec=True)
+    def test_zilliz_vector_db_setup(self, mock_connect, mock_client, mock_config):
+        """
+        Test if the `ZillizVectorDB` instance is initialized with the correct uri and token values.
+        """
+        # Create an instance of ZillizVectorDB with the mock config
+        # zilliz_db = ZillizVectorDB(config=mock_config)
+        ZillizVectorDB(config=mock_config)
+
+        # Assert that the MilvusClient and connections.connect were called
+        mock_client.assert_called_once_with(uri=mock_config.uri, token=mock_config.token)
+        mock_connect.assert_called_once_with(uri=mock_config.uri, token=mock_config.token)
+
+
+class TestZillizDBCollection:
+    @pytest.fixture
+    @mock.patch.dict(os.environ, {"ZILLIZ_CLOUD_URI": "mocked_uri", "ZILLIZ_CLOUD_TOKEN": "mocked_token"})
+    def mock_config(self, mocker):
+        return mocker.Mock(spec=ZillizDBConfig())
+
+    @pytest.fixture
+    def mock_embedder(self, mocker):
+        return mocker.Mock()
+
+    @mock.patch.dict(os.environ, {"ZILLIZ_CLOUD_URI": "mocked_uri", "ZILLIZ_CLOUD_TOKEN": "mocked_token"})
+    def test_init_with_default_collection(self):
+        """
+        Test if the `ZillizVectorDB` instance is initialized with the correct default collection name.
+        """
+        # Create a ZillizDBConfig instance
+        db_config = ZillizDBConfig()
+
+        assert db_config.collection_name == "embedchain_store"
+
+    @mock.patch.dict(os.environ, {"ZILLIZ_CLOUD_URI": "mocked_uri", "ZILLIZ_CLOUD_TOKEN": "mocked_token"})
+    def test_init_with_custom_collection(self):
+        """
+        Test if the `ZillizVectorDB` instance is initialized with the correct custom collection name.
+        """
+        # Create a ZillizDBConfig instance with mocked values
+
+        expected_collection = "test_collection"
+        db_config = ZillizDBConfig(collection_name="test_collection")
+
+        assert db_config.collection_name == expected_collection
+
+    @patch("embedchain.vectordb.zilliz.MilvusClient", autospec=True)
+    @patch("embedchain.vectordb.zilliz.connections", autospec=True)
+    def test_query_with_skip_embedding(self, mock_connect, mock_client, mock_config):
+        """
+        Test if the `ZillizVectorDB` instance is takes in the query with skip_embeddings.
+        """
+        # Create an instance of ZillizVectorDB with mock config
+        zilliz_db = ZillizVectorDB(config=mock_config)
+
+        # Add a 'collection' attribute to the ZillizVectorDB instance for testing
+        zilliz_db.collection = Mock(is_empty=False)  # Mock the 'collection' object
+
+        assert zilliz_db.client == mock_client()
+
+        # Mock the MilvusClient search method
+        with patch.object(zilliz_db.client, "search") as mock_search:
+            # Mock the search result
+            mock_search.return_value = [[{"entity": {"text": "result_doc"}}]]
+
+            # Call the query method with skip_embedding=True
+            query_result = zilliz_db.query(input_query=["query_text"], n_results=1, where={}, skip_embedding=True)
+
+            # Assert that MilvusClient.search was called with the correct parameters
+            mock_search.assert_called_once_with(
+                collection_name=mock_config.collection_name,
+                data=["query_text"],
+                limit=1,
+                output_fields=["text"],
+            )
+
+            # Assert that the query result matches the expected result
+            assert query_result == ["result_doc"]
+
+    @patch("embedchain.vectordb.zilliz.MilvusClient", autospec=True)
+    @patch("embedchain.vectordb.zilliz.connections", autospec=True)
+    def test_query_without_skip_embedding(self, mock_connect, mock_client, mock_embedder, mock_config):
+        """
+        Test if the `ZillizVectorDB` instance is takes in the query without skip_embeddings.
+        """
+        # Create an instance of ZillizVectorDB with mock config
+        zilliz_db = ZillizVectorDB(config=mock_config)
+
+        # Add a 'embedder' attribute to the ZillizVectorDB instance for testing
+        zilliz_db.embedder = mock_embedder # Mock the 'collection' object
+
+        # Add a 'collection' attribute to the ZillizVectorDB instance for testing
+        zilliz_db.collection = Mock(is_empty=False)  # Mock the 'collection' object
+
+        assert zilliz_db.client == mock_client()
+
+        # Mock the MilvusClient search method
+        with patch.object(zilliz_db.client, "search") as mock_search:
+            # Mock the embedding function
+            mock_embedder.embedding_fn.return_value = ["query_vector"]
+
+            # Mock the search result
+            mock_search.return_value = [[{"entity": {"text": "result_doc"}}]]
+
+            # Call the query method with skip_embedding=False
+            query_result = zilliz_db.query(input_query=["query_text"], n_results=1, where={}, skip_embedding=False)
+
+            # Assert that MilvusClient.search was called with the correct parameters
+            mock_search.assert_called_once_with(
+                collection_name=mock_config.collection_name,
+                data=["query_vector"],
+                limit=1,
+                output_fields=["text"],
+            )
+
+            # Assert that the query result matches the expected result
+            assert query_result == ["result_doc"]