|
@@ -429,16 +429,36 @@ class EmbedChain(JSONSerializable):
|
|
|
|
|
|
if dry_run:
|
|
|
return list(documents), metadatas, ids, 0
|
|
|
-
|
|
|
+
|
|
|
# Count before, to calculate a delta in the end.
|
|
|
chunks_before_addition = self.db.count()
|
|
|
|
|
|
- self.db.add(documents=documents, metadatas=metadatas, ids=ids, **kwargs)
|
|
|
- count_new_chunks = self.db.count() - chunks_before_addition
|
|
|
+
|
|
|
+ # Filter out empty documents and ensure they meet the API requirements
|
|
|
+ valid_documents = [doc for doc in documents if doc and isinstance(doc, str)]
|
|
|
+
|
|
|
+ documents = valid_documents
|
|
|
+
|
|
|
+ # Chunk documents into batches of 2048 and handle each batch
|
|
|
+ # helps wigth large loads of embeddings that hit OpenAI limits
|
|
|
+ document_batches = [documents[i:i+2048] for i in range(0, len(documents), 2048)]
|
|
|
+ for batch in document_batches:
|
|
|
+ try:
|
|
|
+ # Add only valid batches
|
|
|
+ if batch:
|
|
|
+ self.db.add(documents=batch, metadatas=metadatas, ids=ids, **kwargs)
|
|
|
+ except Exception as e:
|
|
|
+ print(f"Failed to add batch due to a bad request: {e}")
|
|
|
+ # Handle the error, e.g., by logging, retrying, or skipping
|
|
|
+ pass
|
|
|
+
|
|
|
|
|
|
+ count_new_chunks = self.db.count() - chunks_before_addition
|
|
|
print(f"Successfully saved {src} ({chunker.data_type}). New chunks count: {count_new_chunks}")
|
|
|
+
|
|
|
return list(documents), metadatas, ids, count_new_chunks
|
|
|
|
|
|
+
|
|
|
@staticmethod
|
|
|
def _format_result(results):
|
|
|
return [
|
|
@@ -473,7 +493,9 @@ class EmbedChain(JSONSerializable):
|
|
|
:return: List of contents of the document that matched your query
|
|
|
:rtype: list[str]
|
|
|
"""
|
|
|
+ print("Query passed in config:", config)
|
|
|
query_config = config or self.llm.config
|
|
|
+ print("Final config:", query_config)
|
|
|
if where is not None:
|
|
|
where = where
|
|
|
else:
|
|
@@ -484,6 +506,7 @@ class EmbedChain(JSONSerializable):
|
|
|
if self.config.id is not None:
|
|
|
where.update({"app_id": self.config.id})
|
|
|
|
|
|
+ print('Number documents', query_config)
|
|
|
contexts = self.db.query(
|
|
|
input_query=input_query,
|
|
|
n_results=query_config.number_documents,
|