import os from collections.abc import Iterable from typing import Any, Optional, Union from langchain.callbacks.manager import CallbackManager from langchain.callbacks.stdout import StdOutCallbackHandler from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler try: from langchain_nvidia_ai_endpoints import ChatNVIDIA except ImportError: raise ImportError( "NVIDIA AI endpoints requires extra dependencies. Install with `pip install langchain-nvidia-ai-endpoints`" ) from None from embedchain.config import BaseLlmConfig from embedchain.helpers.json_serializable import register_deserializable from embedchain.llm.base import BaseLlm @register_deserializable class NvidiaLlm(BaseLlm): def __init__(self, config: Optional[BaseLlmConfig] = None): super().__init__(config=config) if not self.config.api_key and "NVIDIA_API_KEY" not in os.environ: raise ValueError("Please set the NVIDIA_API_KEY environment variable or pass it in the config.") def get_llm_model_answer(self, prompt) -> tuple[str, Optional[dict[str, Any]]]: if self.config.token_usage: response, token_info = self._get_answer(prompt, self.config) model_name = "nvidia/" + self.config.model if model_name not in self.config.model_pricing_map: raise ValueError( f"Model {model_name} not found in `model_prices_and_context_window.json`. \ You can disable token usage by setting `token_usage` to False." ) total_cost = ( self.config.model_pricing_map[model_name]["input_cost_per_token"] * token_info["input_tokens"] ) + self.config.model_pricing_map[model_name]["output_cost_per_token"] * token_info["output_tokens"] response_token_info = { "prompt_tokens": token_info["input_tokens"], "completion_tokens": token_info["output_tokens"], "total_tokens": token_info["input_tokens"] + token_info["output_tokens"], "total_cost": round(total_cost, 10), "cost_currency": "USD", } return response, response_token_info return self._get_answer(prompt, self.config) @staticmethod def _get_answer(prompt: str, config: BaseLlmConfig) -> Union[str, Iterable]: callback_manager = [StreamingStdOutCallbackHandler()] if config.stream else [StdOutCallbackHandler()] model_kwargs = config.model_kwargs or {} labels = model_kwargs.get("labels", None) params = {"model": config.model, "nvidia_api_key": config.api_key or os.getenv("NVIDIA_API_KEY")} if config.system_prompt: params["system_prompt"] = config.system_prompt if config.temperature: params["temperature"] = config.temperature if config.top_p: params["top_p"] = config.top_p if labels: params["labels"] = labels llm = ChatNVIDIA(**params, callback_manager=CallbackManager(callback_manager)) chat_response = llm.invoke(prompt) if labels is None else llm.invoke(prompt, labels=labels) if config.token_usage: return chat_response.content, chat_response.response_metadata["token_usage"] return chat_response.content