{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "b02n_zJ_hl3d" }, "source": [ "## Cookbook for using LLAMA2 with Embedchain" ] }, { "cell_type": "markdown", "metadata": { "id": "gyJ6ui2vhtMY" }, "source": [ "### Step-1: Install embedchain package" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "-NbXjAdlh0vJ", "outputId": "86a4a9b2-4ed6-431c-da6f-c3eacb390f42" }, "outputs": [], "source": [ "!pip install embedchain" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install embedchain[dataloaders]" ] }, { "cell_type": "markdown", "metadata": { "id": "nGnpSYAAh2bQ" }, "source": [ "### Step-2: Set LLAMA2 related environment variables and install dependencies\n", "\n", "You can find `OPENAI_API_KEY` on your [OpenAI dashboard](https://platform.openai.com/account/api-keys) and `REPLICATE_API_TOKEN` key on your [Replicate dashboard](https://replicate.com/account/api-tokens). Now lets install the dependencies for LLAMA2." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "qoBUbocNtUUD" }, "outputs": [], "source": [ "!pip install embedchain[llama2]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "0fBdQ9GAiRvK" }, "outputs": [], "source": [ "import os\n", "from embedchain import Pipeline as App\n", "\n", "os.environ[\"OPENAI_API_KEY\"] = \"sk-xxx\"\n", "os.environ[\"REPLICATE_API_TOKEN\"] = \"xxx\"" ] }, { "cell_type": "markdown", "metadata": { "id": "Ns6RhPfbiitr" }, "source": [ "### Step-3: Define your llm and embedding model config" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "S9CkxVjriotB" }, "outputs": [], "source": [ "config = \"\"\"\n", "llm:\n", " provider: llama2\n", " config:\n", " model: 'a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5'\n", " temperature: 0.5\n", " max_tokens: 1000\n", " top_p: 0.5\n", " stream: false\n", "\"\"\"\n", "\n", "# Write the multi-line string to a YAML file\n", "with open('llama2.yaml', 'w') as file:\n", " file.write(config)" ] }, { "cell_type": "markdown", "metadata": { "id": "PGt6uPLIi1CS" }, "source": [ "### Step-4 Create embedchain app based on the config" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Amzxk3m-i3tD" }, "outputs": [], "source": [ "app = App.from_config(yaml_path=\"llama2.yaml\")" ] }, { "cell_type": "markdown", "metadata": { "id": "XNXv4yZwi7ef" }, "source": [ "### Step-5: Add data sources to your app" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 52 }, "id": "Sn_0rx9QjIY9", "outputId": "ba158e9c-0f16-4c6b-a876-7543120985a2" }, "outputs": [], "source": [ "app.add(\"https://www.forbes.com/profile/elon-musk\")" ] }, { "cell_type": "markdown", "metadata": { "id": "_7W6fDeAjMAP" }, "source": [ "### Step-6: All set. Now start asking questions related to your data" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 599 }, "id": "cvIK7dWRjN_f", "outputId": "e2d11a25-a2ed-4034-ec6a-e8a5986c89ae" }, "outputs": [], "source": [ "while(True):\n", " question = input(\"Enter question: \")\n", " if question in ['q', 'exit', 'quit']:\n", " break\n", " answer = app.query(question)\n", " print(answer)" ] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 0 }