import streamlit as st from embedchain import App @st.cache_resource def embedchain_bot(): return App() st.title("💬 Chatbot") st.caption("🚀 An Embedchain app powered by OpenAI!") if "messages" not in st.session_state: st.session_state.messages = [ { "role": "assistant", "content": """ Hi! I'm a chatbot. I can answer questions and learn new things!\n Ask me anything and if you want me to learn something do `/add `.\n I can learn mostly everything. :) """, } ] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input("Ask me anything!"): app = embedchain_bot() if prompt.startswith("/add"): with st.chat_message("user"): st.markdown(prompt) st.session_state.messages.append({"role": "user", "content": prompt}) prompt = prompt.replace("/add", "").strip() with st.chat_message("assistant"): message_placeholder = st.empty() message_placeholder.markdown("Adding to knowledge base...") app.add(prompt) message_placeholder.markdown(f"Added {prompt} to knowledge base!") st.session_state.messages.append({"role": "assistant", "content": f"Added {prompt} to knowledge base!"}) st.stop() with st.chat_message("user"): st.markdown(prompt) st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("assistant"): msg_placeholder = st.empty() msg_placeholder.markdown("Thinking...") full_response = "" for response in app.chat(prompt): msg_placeholder.empty() full_response += response msg_placeholder.markdown(full_response) st.session_state.messages.append({"role": "assistant", "content": full_response})