{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "e9a9dc6a", "metadata": {}, "outputs": [], "source": [ "from embedchain import App\n", "\n", "embedchain_docs_bot = App()" ] }, { "cell_type": "code", "execution_count": 2, "id": "c1c24d68", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "All data from https://docs.embedchain.ai/ already exists in the database.\n" ] } ], "source": [ "embedchain_docs_bot.add(\"docs_site\", \"https://docs.embedchain.ai/\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "48cdaecf", "metadata": {}, "outputs": [], "source": [ "answer = embedchain_docs_bot.query(\"Write a flask API for embedchain bot\")" ] }, { "cell_type": "code", "execution_count": 4, "id": "0fe18085", "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "To write a Flask API for the embedchain bot, you can use the following code snippet:\n", "\n", "```python\n", "from flask import Flask, request, jsonify\n", "from embedchain import App\n", "\n", "app = Flask(__name__)\n", "bot = App()\n", "\n", "# Add datasets to the bot\n", "bot.add(\"youtube_video\", \"https://www.youtube.com/watch?v=3qHkcs3kG44\")\n", "bot.add(\"pdf_file\", \"https://navalmanack.s3.amazonaws.com/Eric-Jorgenson_The-Almanack-of-Naval-Ravikant_Final.pdf\")\n", "\n", "@app.route('/query', methods=['POST'])\n", "def query():\n", " data = request.get_json()\n", " question = data['question']\n", " response = bot.query(question)\n", " return jsonify({'response': response})\n", "\n", "if __name__ == '__main__':\n", " app.run()\n", "```\n", "\n", "In this code, we create a Flask app and initialize an instance of the embedchain bot. We then add the desired datasets to the bot using the `add()` function.\n", "\n", "Next, we define a route `/query` that accepts POST requests. The request body should contain a JSON object with a `question` field. The bot's `query()` function is called with the provided question, and the response is returned as a JSON object.\n", "\n", "Finally, we run the Flask app using `app.run()`.\n", "\n", "Note: Make sure to install Flask and embedchain packages before running this code." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from IPython.display import Markdown\n", "# Create a Markdown object and display it\n", "markdown_answer = Markdown(answer)\n", "display(markdown_answer)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 5 }