from typing import Optional from embedchain.config.vectordb.base import BaseVectorDbConfig from embedchain.helpers.json_serializable import register_deserializable @register_deserializable class OpenSearchDBConfig(BaseVectorDbConfig): def __init__( self, opensearch_url: str, http_auth: tuple[str, str], vector_dimension: int = 1536, collection_name: Optional[str] = None, dir: Optional[str] = None, **extra_params: dict[str, any], ): """ Initializes a configuration class instance for an OpenSearch client. :param collection_name: Default name for the collection, defaults to None :type collection_name: Optional[str], optional :param opensearch_url: URL of the OpenSearch domain :type opensearch_url: str, Eg, "http://localhost:9200" :param http_auth: Tuple of username and password :type http_auth: tuple[str, str], Eg, ("username", "password") :param vector_dimension: Dimension of the vector, defaults to 1536 (openai embedding model) :type vector_dimension: int, optional :param dir: Path to the database directory, where the database is stored, defaults to None :type dir: Optional[str], optional """ self.opensearch_url = opensearch_url self.http_auth = http_auth self.vector_dimension = vector_dimension self.extra_params = extra_params super().__init__(collection_name=collection_name, dir=dir)