import os from collections.abc import Iterable from typing import Optional, Union from langchain.callbacks.manager import CallbackManager from langchain.callbacks.stdout import StdOutCallbackHandler from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler try: from langchain_nvidia_ai_endpoints import ChatNVIDIA except ImportError: raise ImportError( "NVIDIA AI endpoints requires extra dependencies. Install with `pip install langchain-nvidia-ai-endpoints`" ) from None from embedchain.config import BaseLlmConfig from embedchain.helpers.json_serializable import register_deserializable from embedchain.llm.base import BaseLlm @register_deserializable class NvidiaLlm(BaseLlm): def __init__(self, config: Optional[BaseLlmConfig] = None): if "NVIDIA_API_KEY" not in os.environ: raise ValueError("NVIDIA_API_KEY environment variable must be set") super().__init__(config=config) def get_llm_model_answer(self, prompt): return self._get_answer(prompt=prompt, config=self.config) @staticmethod def _get_answer(prompt: str, config: BaseLlmConfig) -> Union[str, Iterable]: callback_manager = [StreamingStdOutCallbackHandler()] if config.stream else [StdOutCallbackHandler()] model_kwargs = config.model_kwargs or {} labels = model_kwargs.get("labels", None) params = {"model": config.model} if config.system_prompt: params["system_prompt"] = config.system_prompt if config.temperature: params["temperature"] = config.temperature if config.top_p: params["top_p"] = config.top_p if labels: params["labels"] = labels llm = ChatNVIDIA(**params, callback_manager=CallbackManager(callback_manager)) return llm.invoke(prompt).content if labels is None else llm.invoke(prompt, labels=labels).content