import os from typing import Optional from langchain.schema import HumanMessage, SystemMessage from langchain_community.chat_models import JinaChat from embedchain.config import BaseLlmConfig from embedchain.helpers.json_serializable import register_deserializable from embedchain.llm.base import BaseLlm @register_deserializable class JinaLlm(BaseLlm): def __init__(self, config: Optional[BaseLlmConfig] = None): if "JINACHAT_API_KEY" not in os.environ: raise ValueError("Please set the JINACHAT_API_KEY environment variable.") super().__init__(config=config) def get_llm_model_answer(self, prompt): response = JinaLlm._get_answer(prompt, self.config) return response @staticmethod def _get_answer(prompt: str, config: BaseLlmConfig) -> str: messages = [] if config.system_prompt: messages.append(SystemMessage(content=config.system_prompt)) messages.append(HumanMessage(content=prompt)) kwargs = { "temperature": config.temperature, "max_tokens": config.max_tokens, "model_kwargs": {}, } if config.top_p: kwargs["model_kwargs"]["top_p"] = config.top_p if config.stream: from langchain.callbacks.streaming_stdout import \ StreamingStdOutCallbackHandler chat = JinaChat(**kwargs, streaming=config.stream, callbacks=[StreamingStdOutCallbackHandler()]) else: chat = JinaChat(**kwargs) return chat(messages).content