import importlib import logging from typing import Optional from embedchain.config import BaseLlmConfig from embedchain.helpers.json_serializable import register_deserializable from embedchain.llm.base import BaseLlm @register_deserializable class VertexAILlm(BaseLlm): def __init__(self, config: Optional[BaseLlmConfig] = None): try: importlib.import_module("vertexai") except ModuleNotFoundError: raise ModuleNotFoundError( "The required dependencies for VertexAI are not installed." 'Please install with `pip install --upgrade "embedchain[vertexai]"`' ) from None super().__init__(config=config) def get_llm_model_answer(self, prompt): return VertexAILlm._get_answer(prompt=prompt, config=self.config) @staticmethod def _get_answer(prompt: str, config: BaseLlmConfig) -> str: from langchain_community.chat_models import ChatVertexAI chat = ChatVertexAI(temperature=config.temperature, model=config.model) if config.top_p and config.top_p != 1: logging.warning("Config option `top_p` is not supported by this model.") messages = BaseLlm._get_messages(prompt, system_prompt=config.system_prompt) return chat(messages).content