from unittest.mock import MagicMock, patch import pytest from langchain.schema import HumanMessage, SystemMessage from embedchain.config import BaseLlmConfig from embedchain.llm.azure_openai import AzureOpenAILlm @pytest.fixture def azure_openai_llm(): config = BaseLlmConfig( deployment_name="azure_deployment", temperature=0.7, model="gpt-3.5-turbo", max_tokens=50, system_prompt="System Prompt", ) return AzureOpenAILlm(config) def test_get_llm_model_answer(azure_openai_llm): with patch.object(AzureOpenAILlm, "_get_answer", return_value="Test Response") as mock_method: prompt = "Test Prompt" response = azure_openai_llm.get_llm_model_answer(prompt) assert response == "Test Response" mock_method.assert_called_once_with(prompt=prompt, config=azure_openai_llm.config) def test_get_answer(azure_openai_llm): with patch("langchain_community.chat_models.AzureChatOpenAI") as mock_chat: mock_chat_instance = mock_chat.return_value mock_chat_instance.return_value = MagicMock(content="Test Response") prompt = "Test Prompt" response = azure_openai_llm._get_answer(prompt, azure_openai_llm.config) assert response == "Test Response" mock_chat.assert_called_once_with( deployment_name=azure_openai_llm.config.deployment_name, openai_api_version="2023-05-15", model_name=azure_openai_llm.config.model or "gpt-3.5-turbo", temperature=azure_openai_llm.config.temperature, max_tokens=azure_openai_llm.config.max_tokens, streaming=azure_openai_llm.config.stream, ) mock_chat_instance.assert_called_once_with( azure_openai_llm._get_messages(prompt, system_prompt=azure_openai_llm.config.system_prompt) ) def test_get_messages(azure_openai_llm): prompt = "Test Prompt" system_prompt = "Test System Prompt" messages = azure_openai_llm._get_messages(prompt, system_prompt) assert messages == [ SystemMessage(content="Test System Prompt", additional_kwargs={}), HumanMessage(content="Test Prompt", additional_kwargs={}, example=False), ] def test_get_answer_top_p_is_provided(azure_openai_llm, caplog): with patch("langchain_community.chat_models.AzureChatOpenAI") as mock_chat: mock_chat_instance = mock_chat.return_value mock_chat_instance.return_value = MagicMock(content="Test Response") prompt = "Test Prompt" config = azure_openai_llm.config config.top_p = 0.5 response = azure_openai_llm._get_answer(prompt, config) assert response == "Test Response" mock_chat.assert_called_once_with( deployment_name=config.deployment_name, openai_api_version="2023-05-15", model_name=config.model or "gpt-3.5-turbo", temperature=config.temperature, max_tokens=config.max_tokens, streaming=config.stream, ) mock_chat_instance.assert_called_once_with( azure_openai_llm._get_messages(prompt, system_prompt=config.system_prompt) ) assert "Config option `top_p` is not supported by this model." in caplog.text def test_when_no_deployment_name_provided(): config = BaseLlmConfig(temperature=0.7, model="gpt-3.5-turbo", max_tokens=50, system_prompt="System Prompt") with pytest.raises(ValueError): llm = AzureOpenAILlm(config) llm.get_llm_model_answer("Test Prompt")