import os import pytest from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from embedchain.config import BaseLlmConfig from embedchain.llm.openai import OpenAILlm @pytest.fixture def config(): os.environ["OPENAI_API_KEY"] = "test_api_key" config = BaseLlmConfig( temperature=0.7, max_tokens=50, top_p=0.8, stream=False, system_prompt="System prompt", model="gpt-3.5-turbo" ) yield config os.environ.pop("OPENAI_API_KEY") def test_get_llm_model_answer(config, mocker): mocked_get_answer = mocker.patch("embedchain.llm.openai.OpenAILlm._get_answer", return_value="Test answer") llm = OpenAILlm(config) answer = llm.get_llm_model_answer("Test query") assert answer == "Test answer" mocked_get_answer.assert_called_once_with("Test query", config) def test_get_llm_model_answer_with_system_prompt(config, mocker): config.system_prompt = "Custom system prompt" mocked_get_answer = mocker.patch("embedchain.llm.openai.OpenAILlm._get_answer", return_value="Test answer") llm = OpenAILlm(config) answer = llm.get_llm_model_answer("Test query") assert answer == "Test answer" mocked_get_answer.assert_called_once_with("Test query", config) def test_get_llm_model_answer_empty_prompt(config, mocker): mocked_get_answer = mocker.patch("embedchain.llm.openai.OpenAILlm._get_answer", return_value="Test answer") llm = OpenAILlm(config) answer = llm.get_llm_model_answer("") assert answer == "Test answer" mocked_get_answer.assert_called_once_with("", config) def test_get_llm_model_answer_with_streaming(config, mocker): config.stream = True mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI") llm = OpenAILlm(config) llm.get_llm_model_answer("Test query") mocked_openai_chat.assert_called_once() callbacks = [callback[1]["callbacks"] for callback in mocked_openai_chat.call_args_list] assert any(isinstance(callback[0], StreamingStdOutCallbackHandler) for callback in callbacks) def test_get_llm_model_answer_without_system_prompt(config, mocker): config.system_prompt = None mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI") llm = OpenAILlm(config) llm.get_llm_model_answer("Test query") mocked_openai_chat.assert_called_once_with( model=config.model, temperature=config.temperature, max_tokens=config.max_tokens, model_kwargs={"top_p": config.top_p}, api_key=os.environ["OPENAI_API_KEY"], ) @pytest.mark.parametrize( "mock_return, expected", [ ([{"test": "test"}], '{"test": "test"}'), ([], "Input could not be mapped to the function!"), ], ) def test_get_llm_model_answer_with_tools(config, mocker, mock_return, expected): mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI") mocked_convert_to_openai_tool = mocker.patch("langchain_core.utils.function_calling.convert_to_openai_tool") mocked_json_output_tools_parser = mocker.patch("langchain.output_parsers.openai_tools.JsonOutputToolsParser") mocked_openai_chat.return_value.bind.return_value.pipe.return_value.invoke.return_value = mock_return llm = OpenAILlm(config, tools={"test": "test"}) answer = llm.get_llm_model_answer("Test query") mocked_openai_chat.assert_called_once_with( model=config.model, temperature=config.temperature, max_tokens=config.max_tokens, model_kwargs={"top_p": config.top_p}, api_key=os.environ["OPENAI_API_KEY"], ) mocked_convert_to_openai_tool.assert_called_once_with({"test": "test"}) mocked_json_output_tools_parser.assert_called_once() assert answer == expected