from unittest.mock import MagicMock, patch import pytest from langchain.schema import HumanMessage, SystemMessage from embedchain.config import BaseLlmConfig from embedchain.llm.vertex_ai import VertexAILlm @pytest.fixture def vertexai_llm(): config = BaseLlmConfig(temperature=0.6, model="vertexai_model", system_prompt="System Prompt") return VertexAILlm(config) def test_get_llm_model_answer(vertexai_llm): with patch.object(VertexAILlm, "_get_answer", return_value="Test Response") as mock_method: prompt = "Test Prompt" response = vertexai_llm.get_llm_model_answer(prompt) assert response == "Test Response" mock_method.assert_called_once_with(prompt=prompt, config=vertexai_llm.config) def test_get_answer_with_warning(vertexai_llm, caplog): with patch("langchain_community.chat_models.ChatVertexAI") as mock_chat: mock_chat_instance = mock_chat.return_value mock_chat_instance.return_value = MagicMock(content="Test Response") prompt = "Test Prompt" config = vertexai_llm.config config.top_p = 0.5 response = vertexai_llm._get_answer(prompt, config) assert response == "Test Response" mock_chat.assert_called_once_with(temperature=config.temperature, model=config.model) assert "Config option `top_p` is not supported by this model." in caplog.text def test_get_answer_no_warning(vertexai_llm, caplog): with patch("langchain_community.chat_models.ChatVertexAI") as mock_chat: mock_chat_instance = mock_chat.return_value mock_chat_instance.return_value = MagicMock(content="Test Response") prompt = "Test Prompt" config = vertexai_llm.config config.top_p = 1.0 response = vertexai_llm._get_answer(prompt, config) assert response == "Test Response" mock_chat.assert_called_once_with(temperature=config.temperature, model=config.model) assert "Config option `top_p` is not supported by this model." not in caplog.text def test_get_messages(vertexai_llm): prompt = "Test Prompt" system_prompt = "Test System Prompt" messages = vertexai_llm._get_messages(prompt, system_prompt) assert messages == [ SystemMessage(content="Test System Prompt", additional_kwargs={}), HumanMessage(content="Test Prompt", additional_kwargs={}, example=False), ]