import logging from typing import Any, Dict, List from chromadb.errors import InvalidDimensionException from langchain.docstore.document import Document try: import chromadb except RuntimeError: from embedchain.utils import use_pysqlite3 use_pysqlite3() import chromadb from chromadb.config import Settings from embedchain.helper_classes.json_serializable import register_deserializable from embedchain.vectordb.base_vector_db import BaseVectorDB @register_deserializable class ChromaDB(BaseVectorDB): """Vector database using ChromaDB.""" def __init__(self, db_dir=None, embedding_fn=None, host=None, port=None): self.embedding_fn = embedding_fn if not hasattr(embedding_fn, "__call__"): raise ValueError("Embedding function is not a function") if host and port: logging.info(f"Connecting to ChromaDB server: {host}:{port}") self.client = chromadb.HttpClient(host=host, port=port) else: if db_dir is None: db_dir = "db" self.settings = Settings(anonymized_telemetry=False, allow_reset=True) self.client = chromadb.PersistentClient( path=db_dir, settings=self.settings, ) super().__init__() def _get_or_create_db(self): """Get or create the database.""" return self.client def _get_or_create_collection(self, name): """Get or create the collection.""" self.collection = self.client.get_or_create_collection( name=name, embedding_function=self.embedding_fn, ) return self.collection def get(self, ids: List[str], where: Dict[str, any]) -> List[str]: """ Get existing doc ids present in vector database :param ids: list of doc ids to check for existance :param where: Optional. to filter data """ existing_docs = self.collection.get( ids=ids, where=where, # optional filter ) return set(existing_docs["ids"]) def add(self, documents: List[str], metadatas: List[object], ids: List[str]) -> Any: """ add data in vector database :param documents: list of texts to add :param metadatas: list of metadata associated with docs :param ids: ids of docs """ self.collection.add(documents=documents, metadatas=metadatas, ids=ids) def _format_result(self, results): return [ (Document(page_content=result[0], metadata=result[1] or {}), result[2]) for result in zip( results["documents"][0], results["metadatas"][0], results["distances"][0], ) ] def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]: """ query contents from vector data base based on vector similarity :param input_query: list of query string :param n_results: no of similar documents to fetch from database :param where: Optional. to filter data :return: The content of the document that matched your query. """ try: result = self.collection.query( query_texts=[ input_query, ], n_results=n_results, where=where, ) except InvalidDimensionException as e: raise InvalidDimensionException( e.message() + ". This is commonly a side-effect when an embedding function, different from the one used to add the embeddings, is used to retrieve an embedding from the database." # noqa E501 ) from None results_formatted = self._format_result(result) contents = [result[0].page_content for result in results_formatted] return contents def count(self) -> int: return self.collection.count() def reset(self): # Delete all data from the database self.client.reset()