import logging import os from typing import Any, Optional try: from langchain_anthropic import ChatAnthropic except ImportError: raise ImportError("Please install the langchain-anthropic package by running `pip install langchain-anthropic`.") from embedchain.config import BaseLlmConfig from embedchain.helpers.json_serializable import register_deserializable from embedchain.llm.base import BaseLlm logger = logging.getLogger(__name__) @register_deserializable class AnthropicLlm(BaseLlm): def __init__(self, config: Optional[BaseLlmConfig] = None): super().__init__(config=config) if not self.config.api_key and "ANTHROPIC_API_KEY" not in os.environ: raise ValueError("Please set the ANTHROPIC_API_KEY environment variable or pass it in the config.") def get_llm_model_answer(self, prompt) -> tuple[str, Optional[dict[str, Any]]]: if self.config.token_usage: response, token_info = self._get_answer(prompt, self.config) model_name = "anthropic/" + self.config.model if model_name not in self.config.model_pricing_map: raise ValueError( f"Model {model_name} not found in `model_prices_and_context_window.json`. \ You can disable token usage by setting `token_usage` to False." ) total_cost = ( self.config.model_pricing_map[model_name]["input_cost_per_token"] * token_info["input_tokens"] ) + self.config.model_pricing_map[model_name]["output_cost_per_token"] * token_info["output_tokens"] response_token_info = { "prompt_tokens": token_info["input_tokens"], "completion_tokens": token_info["output_tokens"], "total_tokens": token_info["input_tokens"] + token_info["output_tokens"], "total_cost": round(total_cost, 10), "cost_currency": "USD", } return response, response_token_info return self._get_answer(prompt, self.config) @staticmethod def _get_answer(prompt: str, config: BaseLlmConfig) -> str: api_key = config.api_key or os.getenv("ANTHROPIC_API_KEY") chat = ChatAnthropic(anthropic_api_key=api_key, temperature=config.temperature, model_name=config.model) if config.max_tokens and config.max_tokens != 1000: logger.warning("Config option `max_tokens` is not supported by this model.") messages = BaseLlm._get_messages(prompt, system_prompt=config.system_prompt) chat_response = chat.invoke(messages) if config.token_usage: return chat_response.content, chat_response.response_metadata["token_usage"] return chat_response.content