from typing import Optional from dotenv import load_dotenv from embedchain.helper.json_serializable import register_deserializable from embedchain.vectordb.base import BaseVectorDB from .BaseAppConfig import BaseAppConfig load_dotenv() @register_deserializable class CustomAppConfig(BaseAppConfig): """ Config to initialize an embedchain custom `App` instance, with extra config options. """ def __init__( self, log_level: str = "WARNING", db: Optional[BaseVectorDB] = None, id: Optional[str] = None, collect_metrics: Optional[bool] = None, collection_name: Optional[str] = None, ): """ Initializes a configuration class instance for an Custom App. Most of the configuration is done in the `CustomApp` class itself. :param log_level: Debug level ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], defaults to "WARNING" :type log_level: str, optional :param db: A database class. It is recommended to set this directly in the `CustomApp` class, not this config, defaults to None :type db: Optional[BaseVectorDB], optional :param id: ID of the app. Document metadata will have this id., defaults to None :type id: Optional[str], optional :param collect_metrics: Send anonymous telemetry to improve embedchain, defaults to True :type collect_metrics: Optional[bool], optional :param collection_name: Default collection name. It's recommended to use app.db.set_collection_name() instead, defaults to None :type collection_name: Optional[str], optional """ super().__init__( log_level=log_level, db=db, id=id, collect_metrics=collect_metrics, collection_name=collection_name )