import logging import os from typing import Optional try: from langchain_anthropic import ChatAnthropic except ImportError: raise ImportError("Please install the langchain-anthropic package by running `pip install langchain-anthropic`.") from embedchain.config import BaseLlmConfig from embedchain.helpers.json_serializable import register_deserializable from embedchain.llm.base import BaseLlm logger = logging.getLogger(__name__) @register_deserializable class AnthropicLlm(BaseLlm): def __init__(self, config: Optional[BaseLlmConfig] = None): super().__init__(config=config) if not self.config.api_key and "ANTHROPIC_API_KEY" not in os.environ: raise ValueError("Please set the ANTHROPIC_API_KEY environment variable or pass it in the config.") def get_llm_model_answer(self, prompt): return AnthropicLlm._get_answer(prompt=prompt, config=self.config) @staticmethod def _get_answer(prompt: str, config: BaseLlmConfig) -> str: api_key = config.api_key or os.getenv("ANTHROPIC_API_KEY") chat = ChatAnthropic(anthropic_api_key=api_key, temperature=config.temperature, model_name=config.model) if config.max_tokens and config.max_tokens != 1000: logger.warning("Config option `max_tokens` is not supported by this model.") messages = BaseLlm._get_messages(prompt, system_prompt=config.system_prompt) return chat(messages).content