---
title: "Pipeline"
---
Create a RAG pipeline object on Embedchain. This is the main entrypoint for a developer to interact with Embedchain APIs. A pipeline configures the llm, vector database, embedding model, and retrieval strategy of your choice.
### Attributes
Pipeline ID
Name of the pipeline
Configuration of the pipeline
Configured LLM for the RAG pipeline
Configured vector database for the RAG pipeline
Configured embedding model for the RAG pipeline
Chunker configuration
Client object (used to deploy a pipeline to Embedchain platform)
Logger object
## Usage
You can create an embedchain pipeline instance using the following methods:
### Default setting
```python Code Example
from embedchain import App
app = App()
```
### Python Dict
```python Code Example
from embedchain import App
config_dict = {
'llm': {
'provider': 'gpt4all',
'config': {
'model': 'orca-mini-3b-gguf2-q4_0.gguf',
'temperature': 0.5,
'max_tokens': 1000,
'top_p': 1,
'stream': False
}
},
'embedder': {
'provider': 'gpt4all'
}
}
# load llm configuration from config dict
app = App.from_config(config=config_dict)
```
### YAML Config
```python main.py
from embedchain import App
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: gpt4all
config:
model: 'orca-mini-3b-gguf2-q4_0.gguf'
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
embedder:
provider: gpt4all
```
### JSON Config
```python main.py
from embedchain import App
# load llm configuration from config.json file
app = App.from_config(config_path="config.json")
```
```json config.json
{
"llm": {
"provider": "gpt4all",
"config": {
"model": "orca-mini-3b-gguf2-q4_0.gguf",
"temperature": 0.5,
"max_tokens": 1000,
"top_p": 1,
"stream": false
}
},
"embedder": {
"provider": "gpt4all"
}
}
```