--- title: "Pipeline" --- Create a RAG pipeline object on Embedchain. This is the main entrypoint for a developer to interact with Embedchain APIs. A pipeline configures the llm, vector database, embedding model, and retrieval strategy of your choice. ### Attributes Pipeline ID Name of the pipeline Configuration of the pipeline Configured LLM for the RAG pipeline Configured vector database for the RAG pipeline Configured embedding model for the RAG pipeline Chunker configuration Client object (used to deploy a pipeline to Embedchain platform) Logger object ## Usage You can create an embedchain pipeline instance using the following methods: ### Default setting ```python Code Example from embedchain import App app = App() ``` ### Python Dict ```python Code Example from embedchain import App config_dict = { 'llm': { 'provider': 'gpt4all', 'config': { 'model': 'orca-mini-3b-gguf2-q4_0.gguf', 'temperature': 0.5, 'max_tokens': 1000, 'top_p': 1, 'stream': False } }, 'embedder': { 'provider': 'gpt4all' } } # load llm configuration from config dict app = App.from_config(config=config_dict) ``` ### YAML Config ```python main.py from embedchain import App # load llm configuration from config.yaml file app = App.from_config(config_path="config.yaml") ``` ```yaml config.yaml llm: provider: gpt4all config: model: 'orca-mini-3b-gguf2-q4_0.gguf' temperature: 0.5 max_tokens: 1000 top_p: 1 stream: false embedder: provider: gpt4all ``` ### JSON Config ```python main.py from embedchain import App # load llm configuration from config.json file app = App.from_config(config_path="config.json") ``` ```json config.json { "llm": { "provider": "gpt4all", "config": { "model": "orca-mini-3b-gguf2-q4_0.gguf", "temperature": 0.5, "max_tokens": 1000, "top_p": 1, "stream": false } }, "embedder": { "provider": "gpt4all" } } ```