import logging from typing import List, Optional from langchain.memory import ConversationBufferMemory from langchain.schema import BaseMessage from embedchain.helper_classes.json_serializable import JSONSerializable from embedchain.config import BaseLlmConfig from embedchain.config.llm.base_llm_config import ( DEFAULT_PROMPT, DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE, DOCS_SITE_PROMPT_TEMPLATE) class BaseLlm(JSONSerializable): def __init__(self, config: Optional[BaseLlmConfig] = None): if config is None: self.config = BaseLlmConfig() else: self.config = config self.memory = ConversationBufferMemory() self.is_docs_site_instance = False self.online = False self.history: any = None def get_llm_model_answer(self): """ Usually implemented by child class """ raise NotImplementedError def set_history(self, history: any): self.history = history def update_history(self): chat_history = self.memory.load_memory_variables({})["history"] if chat_history: self.set_history(chat_history) def generate_prompt(self, input_query, contexts, **kwargs): """ Generates a prompt based on the given query and context, ready to be passed to an LLM :param input_query: The query to use. :param contexts: List of similar documents to the query used as context. :param config: Optional. The `QueryConfig` instance to use as configuration options. :return: The prompt """ context_string = (" | ").join(contexts) web_search_result = kwargs.get("web_search_result", "") if web_search_result: context_string = self._append_search_and_context(context_string, web_search_result) if not self.history: prompt = self.config.template.substitute(context=context_string, query=input_query) else: # check if it's the default template without history if ( not self.config._validate_template_history(self.config.template) and self.config.template.template == DEFAULT_PROMPT ): # swap in the template with history prompt = DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE.substitute( context=context_string, query=input_query, history=self.history ) elif not self.config._validate_template_history(self.config.template): logging.warning("Template does not include `$history` key. History is not included in prompt.") prompt = self.config.template.substitute(context=context_string, query=input_query) else: prompt = self.config.template.substitute( context=context_string, query=input_query, history=self.history ) return prompt def _append_search_and_context(self, context, web_search_result): return f"{context}\nWeb Search Result: {web_search_result}" def get_answer_from_llm(self, prompt): """ Gets an answer based on the given query and context by passing it to an LLM. :param query: The query to use. :param context: Similar documents to the query used as context. :return: The answer. """ return self.get_llm_model_answer(prompt) def access_search_and_get_results(self, input_query): from langchain.tools import DuckDuckGoSearchRun search = DuckDuckGoSearchRun() logging.info(f"Access search to get answers for {input_query}") return search.run(input_query) def _stream_query_response(self, answer): streamed_answer = "" for chunk in answer: streamed_answer = streamed_answer + chunk yield chunk logging.info(f"Answer: {streamed_answer}") def _stream_chat_response(self, answer): streamed_answer = "" for chunk in answer: streamed_answer = streamed_answer + chunk yield chunk self.memory.chat_memory.add_ai_message(streamed_answer) logging.info(f"Answer: {streamed_answer}") def query(self, input_query, contexts, config: BaseLlmConfig = None, dry_run=False, where=None): """ Queries the vector database based on the given input query. Gets relevant doc based on the query and then passes it to an LLM as context to get the answer. :param input_query: The query to use. :param config: Optional. The `LlmConfig` instance to use as configuration options. This is used for one method call. To persistently use a config, declare it during app init. :param dry_run: Optional. A dry run does everything except send the resulting prompt to the LLM. The purpose is to test the prompt, not the response. You can use it to test your prompt, including the context provided by the vector database's doc retrieval. The only thing the dry run does not consider is the cut-off due to the `max_tokens` parameter. :param where: Optional. A dictionary of key-value pairs to filter the database results. :return: The answer to the query. """ query_config = config or self.config if self.is_docs_site_instance: query_config.template = DOCS_SITE_PROMPT_TEMPLATE query_config.number_documents = 5 k = {} if self.online: k["web_search_result"] = self.access_search_and_get_results(input_query) prompt = self.generate_prompt(input_query, contexts, **k) logging.info(f"Prompt: {prompt}") if dry_run: return prompt answer = self.get_answer_from_llm(prompt) if isinstance(answer, str): logging.info(f"Answer: {answer}") return answer else: return self._stream_query_response(answer) def chat(self, input_query, contexts, config: BaseLlmConfig = None, dry_run=False, where=None): """ Queries the vector database on the given input query. Gets relevant doc based on the query and then passes it to an LLM as context to get the answer. Maintains the whole conversation in memory. :param input_query: The query to use. :param config: Optional. The `LlmConfig` instance to use as configuration options. This is used for one method call. To persistently use a config, declare it during app init. :param dry_run: Optional. A dry run does everything except send the resulting prompt to the LLM. The purpose is to test the prompt, not the response. You can use it to test your prompt, including the context provided by the vector database's doc retrieval. The only thing the dry run does not consider is the cut-off due to the `max_tokens` parameter. :param where: Optional. A dictionary of key-value pairs to filter the database results. :return: The answer to the query. """ query_config = config or self.config if self.is_docs_site_instance: query_config.template = DOCS_SITE_PROMPT_TEMPLATE query_config.number_documents = 5 k = {} if self.online: k["web_search_result"] = self.access_search_and_get_results(input_query) self.update_history() prompt = self.generate_prompt(input_query, contexts, **k) logging.info(f"Prompt: {prompt}") if dry_run: return prompt answer = self.get_answer_from_llm(prompt) self.memory.chat_memory.add_user_message(input_query) if isinstance(answer, str): self.memory.chat_memory.add_ai_message(answer) logging.info(f"Answer: {answer}") # NOTE: Adding to history before and after. This could be seen as redundant. # If we change it, we have to change the tests (no big deal). self.update_history() return answer else: # this is a streamed response and needs to be handled differently. return self._stream_chat_response(answer) @staticmethod def _get_messages(prompt: str, system_prompt: Optional[str] = None) -> List[BaseMessage]: from langchain.schema import HumanMessage, SystemMessage messages = [] if system_prompt: messages.append(SystemMessage(content=system_prompt)) messages.append(HumanMessage(content=prompt)) return messages