---
title: 🤖 Large language models (LLMs)
---
## Overview
Embedchain comes with built-in support for various popular large language models. We handle the complexity of integrating these models for you, allowing you to easily customize your language model interactions through a user-friendly interface.
## OpenAI
To use OpenAI LLM models, you have to set the `OPENAI_API_KEY` environment variable. You can obtain the OpenAI API key from the [OpenAI Platform](https://platform.openai.com/account/api-keys).
Once you have obtained the key, you can use it like this:
```python
import os
from embedchain import Pipeline as App
os.environ['OPENAI_API_KEY'] = 'xxx'
app = App()
app.add("https://en.wikipedia.org/wiki/OpenAI")
app.query("What is OpenAI?")
```
If you are looking to configure the different parameters of the LLM, you can do so by loading the app using a [yaml config](https://github.com/embedchain/embedchain/blob/main/configs/chroma.yaml) file.
```python main.py
import os
from embedchain import Pipeline as App
os.environ['OPENAI_API_KEY'] = 'xxx'
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: openai
config:
model: 'gpt-3.5-turbo'
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
```
### Function Calling
To enable [function calling](https://platform.openai.com/docs/guides/function-calling) in your application using embedchain and OpenAI, you need to pass functions into `OpenAILlm` class as an array of functions. Here are several ways in which you can achieve that:
Examples:
```python
import os
from embedchain import Pipeline as App
from embedchain.llm.openai import OpenAILlm
import requests
from pydantic import BaseModel, Field, ValidationError, field_validator
os.environ["OPENAI_API_KEY"] = "sk-xxx"
class QA(BaseModel):
"""
A question and answer pair.
"""
question: str = Field(
..., description="The question.", example="What is a mountain?"
)
answer: str = Field(
..., description="The answer.", example="A mountain is a hill."
)
person_who_is_asking: str = Field(
..., description="The person who is asking the question.", example="John"
)
@field_validator("question")
def question_must_end_with_a_question_mark(cls, v):
"""
Validate that the question ends with a question mark.
"""
if not v.endswith("?"):
raise ValueError("question must end with a question mark")
return v
@field_validator("answer")
def answer_must_end_with_a_period(cls, v):
"""
Validate that the answer ends with a period.
"""
if not v.endswith("."):
raise ValueError("answer must end with a period")
return v
llm = OpenAILlm(config=None,functions=[QA])
app = App(llm=llm)
result = app.query("Hey I am Sid. What is a mountain? A mountain is a hill.")
print(result)
```
```python
import os
from embedchain import Pipeline as App
from embedchain.llm.openai import OpenAILlm
import requests
from pydantic import BaseModel, Field, ValidationError, field_validator
os.environ["OPENAI_API_KEY"] = "sk-xxx"
json_schema = {
"name": "get_qa",
"description": "A question and answer pair and the user who is asking the question.",
"parameters": {
"type": "object",
"properties": {
"question": {"type": "string", "description": "The question."},
"answer": {"type": "string", "description": "The answer."},
"person_who_is_asking": {
"type": "string",
"description": "The person who is asking the question.",
}
},
"required": ["question", "answer", "person_who_is_asking"],
},
}
llm = OpenAILlm(config=None,functions=[json_schema])
app = App(llm=llm)
result = app.query("Hey I am Sid. What is a mountain? A mountain is a hill.")
print(result)
```
```python
import os
from embedchain import Pipeline as App
from embedchain.llm.openai import OpenAILlm
import requests
from pydantic import BaseModel, Field, ValidationError, field_validator
os.environ["OPENAI_API_KEY"] = "sk-xxx"
def find_info_of_pokemon(pokemon: str):
"""
Find the information of the given pokemon.
Args:
pokemon: The pokemon.
"""
req = requests.get(f"https://pokeapi.co/api/v2/pokemon/{pokemon}")
if req.status_code == 404:
raise ValueError("pokemon not found")
return req.json()
llm = OpenAILlm(config=None,functions=[find_info_of_pokemon])
app = App(llm=llm)
result = app.query("Tell me more about the pokemon pikachu.")
print(result)
```
## Google AI
To use Google AI model, you have to set the `GOOGLE_API_KEY` environment variable. You can obtain the Google API key from the [Google Maker Suite](https://makersuite.google.com/app/apikey)
```python main.py
import os
from embedchain import Pipeline as App
os.environ["GOOGLE_API_KEY"] = "xxx"
app = App.from_config(config_path="config.yaml")
app.add("https://www.forbes.com/profile/elon-musk")
response = app.query("What is the net worth of Elon Musk?")
if app.llm.config.stream: # if stream is enabled, response is a generator
for chunk in response:
print(chunk)
else:
print(response)
```
```yaml config.yaml
llm:
provider: google
config:
model: gemini-pro
max_tokens: 1000
temperature: 0.5
top_p: 1
stream: false
embedder:
provider: google
config:
model: 'models/embedding-001'
task_type: "retrieval_document"
title: "Embeddings for Embedchain"
```
## Azure OpenAI
To use Azure OpenAI model, you have to set some of the azure openai related environment variables as given in the code block below:
```python main.py
import os
from embedchain import Pipeline as App
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://xxx.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "xxx"
os.environ["OPENAI_API_VERSION"] = "xxx"
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: azure_openai
config:
model: gpt-35-turbo
deployment_name: your_llm_deployment_name
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
embedder:
provider: azure_openai
config:
model: text-embedding-ada-002
deployment_name: you_embedding_model_deployment_name
```
You can find the list of models and deployment name on the [Azure OpenAI Platform](https://oai.azure.com/portal).
## Anthropic
To use anthropic's model, please set the `ANTHROPIC_API_KEY` which you find on their [Account Settings Page](https://console.anthropic.com/account/keys).
```python main.py
import os
from embedchain import Pipeline as App
os.environ["ANTHROPIC_API_KEY"] = "xxx"
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: anthropic
config:
model: 'claude-instant-1'
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
```
## Cohere
Install related dependencies using the following command:
```bash
pip install --upgrade 'embedchain[cohere]'
```
Set the `COHERE_API_KEY` as environment variable which you can find on their [Account settings page](https://dashboard.cohere.com/api-keys).
Once you have the API key, you are all set to use it with Embedchain.
```python main.py
import os
from embedchain import Pipeline as App
os.environ["COHERE_API_KEY"] = "xxx"
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: cohere
config:
model: large
temperature: 0.5
max_tokens: 1000
top_p: 1
```
## Together
Install related dependencies using the following command:
```bash
pip install --upgrade 'embedchain[together]'
```
Set the `TOGETHER_API_KEY` as environment variable which you can find on their [Account settings page](https://api.together.xyz/settings/api-keys).
Once you have the API key, you are all set to use it with Embedchain.
```python main.py
import os
from embedchain import Pipeline as App
os.environ["TOGETHER_API_KEY"] = "xxx"
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: together
config:
model: togethercomputer/RedPajama-INCITE-7B-Base
temperature: 0.5
max_tokens: 1000
top_p: 1
```
## Ollama
Setup Ollama using https://github.com/jmorganca/ollama
```python main.py
import os
from embedchain import Pipeline as App
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: ollama
config:
model: 'llama2'
temperature: 0.5
top_p: 1
stream: true
```
## GPT4ALL
Install related dependencies using the following command:
```bash
pip install --upgrade 'embedchain[opensource]'
```
GPT4all is a free-to-use, locally running, privacy-aware chatbot. No GPU or internet required. You can use this with Embedchain using the following code:
```python main.py
from embedchain import Pipeline as App
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: gpt4all
config:
model: 'orca-mini-3b-gguf2-q4_0.gguf'
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
embedder:
provider: gpt4all
```
## JinaChat
First, set `JINACHAT_API_KEY` in environment variable which you can obtain from [their platform](https://chat.jina.ai/api).
Once you have the key, load the app using the config yaml file:
```python main.py
import os
from embedchain import Pipeline as App
os.environ["JINACHAT_API_KEY"] = "xxx"
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: jina
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
```
## Hugging Face
Install related dependencies using the following command:
```bash
pip install --upgrade 'embedchain[huggingface-hub]'
```
First, set `HUGGINGFACE_ACCESS_TOKEN` in environment variable which you can obtain from [their platform](https://huggingface.co/settings/tokens).
Once you have the token, load the app using the config yaml file:
```python main.py
import os
from embedchain import Pipeline as App
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "xxx"
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: huggingface
config:
model: 'google/flan-t5-xxl'
temperature: 0.5
max_tokens: 1000
top_p: 0.5
stream: false
```
## Llama2
Llama2 is integrated through [Replicate](https://replicate.com/). Set `REPLICATE_API_TOKEN` in environment variable which you can obtain from [their platform](https://replicate.com/account/api-tokens).
Once you have the token, load the app using the config yaml file:
```python main.py
import os
from embedchain import Pipeline as App
os.environ["REPLICATE_API_TOKEN"] = "xxx"
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: llama2
config:
model: 'a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5'
temperature: 0.5
max_tokens: 1000
top_p: 0.5
stream: false
```
## Vertex AI
Setup Google Cloud Platform application credentials by following the instruction on [GCP](https://cloud.google.com/docs/authentication/external/set-up-adc). Once setup is done, use the following code to create an app using VertexAI as provider:
```python main.py
from embedchain import Pipeline as App
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: vertexai
config:
model: 'chat-bison'
temperature: 0.5
top_p: 0.5
```