--- title: 🤖 Overview --- ## Overview Mem0 includes built-in support for various popular large language models. Memory can utilize the LLM provided by the user, ensuring efficient use for specific needs. ## OpenAI To use OpenAI LLM models, you have to set the `OPENAI_API_KEY` environment variable. You can obtain the OpenAI API key from the [OpenAI Platform](https://platform.openai.com/account/api-keys). Once you have obtained the key, you can use it like this: ```python import os from mem0 import Memory os.environ["OPENAI_API_KEY"] = "your-api-key" config = { "llm": { "provider": "openai", "config": { "model": "gpt-4o", "temperature": 0.2, "max_tokens": 1500, } } } m = Memory.from_config(config) m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"}) ``` ## Groq [Groq](https://groq.com/) is the creator of the world's first Language Processing Unit (LPU), providing exceptional speed performance for AI workloads running on their LPU Inference Engine. In order to use LLMs from Groq, go to their [platform](https://console.groq.com/keys) and get the API key. Set the API key as `GROQ_API_KEY` environment variable to use the model as given below in the example. ```python import os from mem0 import Memory os.environ["GROQ_API_KEY"] = "your-api-key" config = { "llm": { "provider": "groq", "config": { "model": "mixtral-8x7b-32768", "temperature": 0.1, "max_tokens": 1000, } } } m = Memory.from_config(config) m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"}) ``` ## TogetherAI To use TogetherAI LLM models, you have to set the `TOGETHER_API_KEY` environment variable. You can obtain the TogetherAI API key from their [Account settings page](https://api.together.xyz/settings/api-keys). Once you have obtained the key, you can use it like this: ```python import os from mem0 import Memory os.environ["TOGETHER_API_KEY"] = "your-api-key" config = { "llm": { "provider": "togetherai", "config": { "model": "mistralai/Mixtral-8x7B-Instruct-v0.1", "temperature": 0.2, "max_tokens": 1500, } } } m = Memory.from_config(config) m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"}) ``` ## AWS Bedrock ### Setup - Before using the AWS Bedrock LLM, make sure you have the appropriate model access from [Bedrock Console](https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/modelaccess). - You will also need to authenticate the `boto3` client by using a method in the [AWS documentation](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#configuring-credentials) - You will have to export `AWS_REGION`, `AWS_ACCESS_KEY`, and `AWS_SECRET_ACCESS_KEY` to set environment variables. ```python import os from mem0 import Memory os.environ['AWS_REGION'] = 'us-east-1' os.environ["AWS_ACCESS_KEY"] = "xx" os.environ["AWS_SECRET_ACCESS_KEY"] = "xx" config = { "llm": { "provider": "aws_bedrock", "config": { "model": "arn:aws:bedrock:us-east-1:123456789012:model/your-model-name", "temperature": 0.2, "max_tokens": 1500, } } } m = Memory.from_config(config) m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"}) ``` ## Litellm [Litellm](https://litellm.vercel.app/docs/) is compatible with over 100 large language models (LLMs), all using a standardized input/output format. You can explore the [available models]((https://litellm.vercel.app/docs/providers)) to use with Litellm. Ensure you set the `API_KEY` for the model you choose to use. ```python import os from mem0 import Memory os.environ["OPENAI_API_KEY"] = "your-api-key" config = { "llm": { "provider": "litellm", "config": { "model": "gpt-3.5-turbo", "temperature": 0.2, "max_tokens": 1500, } } } m = Memory.from_config(config) m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"}) ``` ## Google AI To use Google AI model, you have to set the `GOOGLE_API_KEY` environment variable. You can obtain the Google API key from the [Google Maker Suite](https://makersuite.google.com/app/apikey) Once you have obtained the key, you can use it like this: ```python import os from mem0 import Memory os.environ["GEMINI_API_KEY"] = "your-api-key" config = { "llm": { "provider": "litellm", "config": { "model": "gemini/gemini-pro", "temperature": 0.2, "max_tokens": 1500, } } } m = Memory.from_config(config) m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"}) ``` ## Anthropic To use anthropic's models, please set the `ANTHROPIC_API_KEY` which you find on their [Account Settings Page](https://console.anthropic.com/account/keys). ```python import os from mem0 import Memory os.environ["ANTHROPIC_API_KEY"] = "your-api-key" config = { "llm": { "provider": "litellm", "config": { "model": "claude-3-opus-20240229", "temperature": 0.1, "max_tokens": 2000, } } } m = Memory.from_config(config) m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"}) ``` ## Mistral AI To use mistral's models, please Obtain the Mistral AI api key from their [console](https://console.mistral.ai/). Set the `MISTRAL_API_KEY` environment variable to use the model as given below in the example. ```python import os from mem0 import Memory os.environ["MISTRAL_API_KEY"] = "your-api-key" config = { "llm": { "provider": "litellm", "config": { "model": "open-mixtral-8x7b", "temperature": 0.1, "max_tokens": 2000, } } } m = Memory.from_config(config) m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"}) ``` ## OpenAI Azure To use Azure AI models, you have to set the `AZURE_API_KEY`, `AZURE_API_BASE`, and `AZURE_API_VERSION` environment variables. You can obtain the Azure API key from the [Azure](https://azure.microsoft.com/). ```python import os from mem0 import Memory os.environ["AZURE_API_KEY"] = "your-api-key" # Needed to use custom models os.environ["AZURE_API_BASE"] = "your-api-base-url" os.environ["AZURE_API_VERSION"] = "version-to-use" config = { "llm": { "provider": "litellm", "config": { "model": "azure_ai/command-r-plus", "temperature": 0.1, "max_tokens": 2000, } } } m = Memory.from_config(config) m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"}) ```