import os import httpx import pytest from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from embedchain.config import BaseLlmConfig from embedchain.llm.openai import OpenAILlm @pytest.fixture() def env_config(): os.environ["OPENAI_API_KEY"] = "test_api_key" os.environ["OPENAI_API_BASE"] = "https://api.openai.com/v1/engines/" yield os.environ.pop("OPENAI_API_KEY") @pytest.fixture def config(env_config): config = BaseLlmConfig( temperature=0.7, max_tokens=50, top_p=0.8, stream=False, system_prompt="System prompt", model="gpt-3.5-turbo", http_client_proxies=None, http_async_client_proxies=None, ) yield config def test_get_llm_model_answer(config, mocker): mocked_get_answer = mocker.patch("embedchain.llm.openai.OpenAILlm._get_answer", return_value="Test answer") llm = OpenAILlm(config) answer = llm.get_llm_model_answer("Test query") assert answer == "Test answer" mocked_get_answer.assert_called_once_with("Test query", config) def test_get_llm_model_answer_with_system_prompt(config, mocker): config.system_prompt = "Custom system prompt" mocked_get_answer = mocker.patch("embedchain.llm.openai.OpenAILlm._get_answer", return_value="Test answer") llm = OpenAILlm(config) answer = llm.get_llm_model_answer("Test query") assert answer == "Test answer" mocked_get_answer.assert_called_once_with("Test query", config) def test_get_llm_model_answer_empty_prompt(config, mocker): mocked_get_answer = mocker.patch("embedchain.llm.openai.OpenAILlm._get_answer", return_value="Test answer") llm = OpenAILlm(config) answer = llm.get_llm_model_answer("") assert answer == "Test answer" mocked_get_answer.assert_called_once_with("", config) def test_get_llm_model_answer_with_token_usage(config, mocker): test_config = BaseLlmConfig( temperature=config.temperature, max_tokens=config.max_tokens, top_p=config.top_p, stream=config.stream, system_prompt=config.system_prompt, model=config.model, token_usage=True, ) mocked_get_answer = mocker.patch( "embedchain.llm.openai.OpenAILlm._get_answer", return_value=("Test answer", {"prompt_tokens": 1, "completion_tokens": 2}), ) llm = OpenAILlm(test_config) answer, token_info = llm.get_llm_model_answer("Test query") assert answer == "Test answer" assert token_info == { "prompt_tokens": 1, "completion_tokens": 2, "total_tokens": 3, "total_cost": 5.5e-06, "cost_currency": "USD", } mocked_get_answer.assert_called_once_with("Test query", test_config) def test_get_llm_model_answer_with_streaming(config, mocker): config.stream = True mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI") llm = OpenAILlm(config) llm.get_llm_model_answer("Test query") mocked_openai_chat.assert_called_once() callbacks = [callback[1]["callbacks"] for callback in mocked_openai_chat.call_args_list] assert any(isinstance(callback[0], StreamingStdOutCallbackHandler) for callback in callbacks) def test_get_llm_model_answer_without_system_prompt(config, mocker): config.system_prompt = None mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI") llm = OpenAILlm(config) llm.get_llm_model_answer("Test query") mocked_openai_chat.assert_called_once_with( model=config.model, temperature=config.temperature, max_tokens=config.max_tokens, model_kwargs={"top_p": config.top_p}, api_key=os.environ["OPENAI_API_KEY"], base_url=os.environ["OPENAI_API_BASE"], http_client=None, http_async_client=None, ) def test_get_llm_model_answer_with_special_headers(config, mocker): config.default_headers = {"test": "test"} mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI") llm = OpenAILlm(config) llm.get_llm_model_answer("Test query") mocked_openai_chat.assert_called_once_with( model=config.model, temperature=config.temperature, max_tokens=config.max_tokens, model_kwargs={"top_p": config.top_p}, api_key=os.environ["OPENAI_API_KEY"], base_url=os.environ["OPENAI_API_BASE"], default_headers={"test": "test"}, http_client=None, http_async_client=None, ) def test_get_llm_model_answer_with_model_kwargs(config, mocker): config.model_kwargs = {"response_format": {"type": "json_object"}} mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI") llm = OpenAILlm(config) llm.get_llm_model_answer("Test query") mocked_openai_chat.assert_called_once_with( model=config.model, temperature=config.temperature, max_tokens=config.max_tokens, model_kwargs={"top_p": config.top_p, "response_format": {"type": "json_object"}}, api_key=os.environ["OPENAI_API_KEY"], base_url=os.environ["OPENAI_API_BASE"], http_client=None, http_async_client=None, ) @pytest.mark.parametrize( "mock_return, expected", [ ([{"test": "test"}], '{"test": "test"}'), ([], "Input could not be mapped to the function!"), ], ) def test_get_llm_model_answer_with_tools(config, mocker, mock_return, expected): mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI") mocked_convert_to_openai_tool = mocker.patch("langchain_core.utils.function_calling.convert_to_openai_tool") mocked_json_output_tools_parser = mocker.patch("langchain.output_parsers.openai_tools.JsonOutputToolsParser") mocked_openai_chat.return_value.bind.return_value.pipe.return_value.invoke.return_value = mock_return llm = OpenAILlm(config, tools={"test": "test"}) answer = llm.get_llm_model_answer("Test query") mocked_openai_chat.assert_called_once_with( model=config.model, temperature=config.temperature, max_tokens=config.max_tokens, model_kwargs={"top_p": config.top_p}, api_key=os.environ["OPENAI_API_KEY"], base_url=os.environ["OPENAI_API_BASE"], http_client=None, http_async_client=None, ) mocked_convert_to_openai_tool.assert_called_once_with({"test": "test"}) mocked_json_output_tools_parser.assert_called_once() assert answer == expected def test_get_llm_model_answer_with_http_client_proxies(env_config, mocker): mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI") mock_http_client = mocker.Mock(spec=httpx.Client) mock_http_client_instance = mocker.Mock(spec=httpx.Client) mock_http_client.return_value = mock_http_client_instance mocker.patch("httpx.Client", new=mock_http_client) config = BaseLlmConfig( temperature=0.7, max_tokens=50, top_p=0.8, stream=False, system_prompt="System prompt", model="gpt-3.5-turbo", http_client_proxies="http://testproxy.mem0.net:8000", ) llm = OpenAILlm(config) llm.get_llm_model_answer("Test query") mocked_openai_chat.assert_called_once_with( model=config.model, temperature=config.temperature, max_tokens=config.max_tokens, model_kwargs={"top_p": config.top_p}, api_key=os.environ["OPENAI_API_KEY"], base_url=os.environ["OPENAI_API_BASE"], http_client=mock_http_client_instance, http_async_client=None, ) mock_http_client.assert_called_once_with(proxies="http://testproxy.mem0.net:8000") def test_get_llm_model_answer_with_http_async_client_proxies(env_config, mocker): mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI") mock_http_async_client = mocker.Mock(spec=httpx.AsyncClient) mock_http_async_client_instance = mocker.Mock(spec=httpx.AsyncClient) mock_http_async_client.return_value = mock_http_async_client_instance mocker.patch("httpx.AsyncClient", new=mock_http_async_client) config = BaseLlmConfig( temperature=0.7, max_tokens=50, top_p=0.8, stream=False, system_prompt="System prompt", model="gpt-3.5-turbo", http_async_client_proxies={"http://": "http://testproxy.mem0.net:8000"}, ) llm = OpenAILlm(config) llm.get_llm_model_answer("Test query") mocked_openai_chat.assert_called_once_with( model=config.model, temperature=config.temperature, max_tokens=config.max_tokens, model_kwargs={"top_p": config.top_p}, api_key=os.environ["OPENAI_API_KEY"], base_url=os.environ["OPENAI_API_BASE"], http_client=None, http_async_client=mock_http_async_client_instance, ) mock_http_async_client.assert_called_once_with(proxies={"http://": "http://testproxy.mem0.net:8000"})