import os from typing import Optional, Union from chromadb import EmbeddingFunction, Embeddings from embedchain.config import BaseEmbedderConfig from embedchain.embedder.base import BaseEmbedder from embedchain.models import VectorDimensions class MistralAIEmbeddingFunction(EmbeddingFunction): def __init__(self, config: BaseEmbedderConfig) -> None: super().__init__() try: from langchain_mistralai import MistralAIEmbeddings except ModuleNotFoundError: raise ModuleNotFoundError( "The required dependencies for MistralAI are not installed." 'Please install with `pip install --upgrade "embedchain[mistralai]"`' ) from None self.config = config api_key = self.config.api_key or os.getenv("MISTRAL_API_KEY") self.client = MistralAIEmbeddings(mistral_api_key=api_key) self.client.model = self.config.model def __call__(self, input: Union[list[str], str]) -> Embeddings: if isinstance(input, str): input_ = [input] else: input_ = input response = self.client.embed_documents(input_) return response class MistralAIEmbedder(BaseEmbedder): def __init__(self, config: Optional[BaseEmbedderConfig] = None): super().__init__(config) if self.config.model is None: self.config.model = "mistral-embed" embedding_fn = MistralAIEmbeddingFunction(config=self.config) self.set_embedding_fn(embedding_fn=embedding_fn) vector_dimension = self.config.vector_dimension or VectorDimensions.MISTRAL_AI.value self.set_vector_dimension(vector_dimension=vector_dimension)