import json from typing import Any, Dict, Optional from langchain.chat_models import ChatOpenAI from langchain.schema import AIMessage, HumanMessage, SystemMessage from embedchain.config import BaseLlmConfig from embedchain.helpers.json_serializable import register_deserializable from embedchain.llm.base import BaseLlm @register_deserializable class OpenAILlm(BaseLlm): def __init__(self, config: Optional[BaseLlmConfig] = None, functions: Optional[Dict[str, Any]] = None): self.functions = functions super().__init__(config=config) def get_llm_model_answer(self, prompt) -> str: response = self._get_answer(prompt, self.config) return response def _get_answer(self, prompt: str, config: BaseLlmConfig) -> str: messages = [] if config.system_prompt: messages.append(SystemMessage(content=config.system_prompt)) messages.append(HumanMessage(content=prompt)) kwargs = { "model": config.model or "gpt-3.5-turbo", "temperature": config.temperature, "max_tokens": config.max_tokens, "model_kwargs": {}, } if config.top_p: kwargs["model_kwargs"]["top_p"] = config.top_p if config.stream: from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()] chat = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=callbacks) else: chat = ChatOpenAI(**kwargs) if self.functions is not None: from langchain.chains.openai_functions import create_openai_fn_runnable from langchain.prompts import ChatPromptTemplate structured_prompt = ChatPromptTemplate.from_messages(messages) runnable = create_openai_fn_runnable(functions=self.functions, prompt=structured_prompt, llm=chat) fn_res = runnable.invoke( { "input": prompt, } ) messages.append(AIMessage(content=json.dumps(fn_res))) return chat(messages).content