import ast import concurrent.futures import json import logging import os import sqlite3 import uuid from typing import Any, Optional, Union import requests import yaml from tqdm import tqdm from embedchain.cache import (Config, ExactMatchEvaluation, SearchDistanceEvaluation, cache, gptcache_data_manager, gptcache_pre_function) from embedchain.client import Client from embedchain.config import AppConfig, CacheConfig, ChunkerConfig from embedchain.constants import SQLITE_PATH from embedchain.embedchain import EmbedChain from embedchain.embedder.base import BaseEmbedder from embedchain.embedder.openai import OpenAIEmbedder from embedchain.eval.base import BaseMetric from embedchain.eval.metrics import (AnswerRelevance, ContextRelevance, Groundedness) from embedchain.factory import EmbedderFactory, LlmFactory, VectorDBFactory from embedchain.helpers.json_serializable import register_deserializable from embedchain.llm.base import BaseLlm from embedchain.llm.openai import OpenAILlm from embedchain.telemetry.posthog import AnonymousTelemetry from embedchain.utils.eval import EvalData, EvalMetric from embedchain.utils.misc import validate_config from embedchain.vectordb.base import BaseVectorDB from embedchain.vectordb.chroma import ChromaDB # Set up the user directory if it doesn't exist already Client.setup_dir() @register_deserializable class App(EmbedChain): """ EmbedChain App lets you create a LLM powered app for your unstructured data by defining your chosen data source, embedding model, and vector database. """ def __init__( self, id: str = None, name: str = None, config: AppConfig = None, db: BaseVectorDB = None, embedding_model: BaseEmbedder = None, llm: BaseLlm = None, config_data: dict = None, log_level=logging.WARN, auto_deploy: bool = False, chunker: ChunkerConfig = None, cache_config: CacheConfig = None, ): """ Initialize a new `App` instance. :param config: Configuration for the pipeline, defaults to None :type config: AppConfig, optional :param db: The database to use for storing and retrieving embeddings, defaults to None :type db: BaseVectorDB, optional :param embedding_model: The embedding model used to calculate embeddings, defaults to None :type embedding_model: BaseEmbedder, optional :param llm: The LLM model used to calculate embeddings, defaults to None :type llm: BaseLlm, optional :param config_data: Config dictionary, defaults to None :type config_data: dict, optional :param log_level: Log level to use, defaults to logging.WARN :type log_level: int, optional :param auto_deploy: Whether to deploy the pipeline automatically, defaults to False :type auto_deploy: bool, optional :raises Exception: If an error occurs while creating the pipeline """ if id and config_data: raise Exception("Cannot provide both id and config. Please provide only one of them.") if id and name: raise Exception("Cannot provide both id and name. Please provide only one of them.") if name and config: raise Exception("Cannot provide both name and config. Please provide only one of them.") logging.basicConfig(level=log_level, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s") self.logger = logging.getLogger(__name__) self.auto_deploy = auto_deploy # Store the dict config as an attribute to be able to send it self.config_data = config_data if (config_data and validate_config(config_data)) else None self.client = None # pipeline_id from the backend self.id = None self.chunker = None if chunker: self.chunker = ChunkerConfig(**chunker) self.cache_config = cache_config self.config = config or AppConfig() self.name = self.config.name self.config.id = self.local_id = str(uuid.uuid4()) if self.config.id is None else self.config.id if id is not None: # Init client first since user is trying to fetch the pipeline # details from the platform self._init_client() pipeline_details = self._get_pipeline(id) self.config.id = self.local_id = pipeline_details["metadata"]["local_id"] self.id = id if name is not None: self.name = name self.embedding_model = embedding_model or OpenAIEmbedder() self.db = db or ChromaDB() self.llm = llm or OpenAILlm() self._init_db() # If cache_config is provided, initializing the cache ... if self.cache_config is not None: self._init_cache() # Send anonymous telemetry self._telemetry_props = {"class": self.__class__.__name__} self.telemetry = AnonymousTelemetry(enabled=self.config.collect_metrics) # Establish a connection to the SQLite database self.connection = sqlite3.connect(SQLITE_PATH, check_same_thread=False) self.cursor = self.connection.cursor() # Create the 'data_sources' table if it doesn't exist self.cursor.execute( """ CREATE TABLE IF NOT EXISTS data_sources ( pipeline_id TEXT, hash TEXT, type TEXT, value TEXT, metadata TEXT, is_uploaded INTEGER DEFAULT 0, PRIMARY KEY (pipeline_id, hash) ) """ ) self.connection.commit() # Send anonymous telemetry self.telemetry.capture(event_name="init", properties=self._telemetry_props) self.user_asks = [] if self.auto_deploy: self.deploy() def _init_db(self): """ Initialize the database. """ self.db._set_embedder(self.embedding_model) self.db._initialize() self.db.set_collection_name(self.db.config.collection_name) def _init_cache(self): if self.cache_config.similarity_eval_config.strategy == "exact": similarity_eval_func = ExactMatchEvaluation() else: similarity_eval_func = SearchDistanceEvaluation( max_distance=self.cache_config.similarity_eval_config.max_distance, positive=self.cache_config.similarity_eval_config.positive, ) cache.init( pre_embedding_func=gptcache_pre_function, embedding_func=self.embedding_model.to_embeddings, data_manager=gptcache_data_manager(vector_dimension=self.embedding_model.vector_dimension), similarity_evaluation=similarity_eval_func, config=Config(**self.cache_config.init_config.as_dict()), ) def _init_client(self): """ Initialize the client. """ config = Client.load_config() if config.get("api_key"): self.client = Client() else: api_key = input( "🔑 Enter your Embedchain API key. You can find the API key at https://app.embedchain.ai/settings/keys/ \n" # noqa: E501 ) self.client = Client(api_key=api_key) def _get_pipeline(self, id): """ Get existing pipeline """ print("🛠️ Fetching pipeline details from the platform...") url = f"{self.client.host}/api/v1/pipelines/{id}/cli/" r = requests.get( url, headers={"Authorization": f"Token {self.client.api_key}"}, ) if r.status_code == 404: raise Exception(f"❌ Pipeline with id {id} not found!") print( f"🎉 Pipeline loaded successfully! Pipeline url: https://app.embedchain.ai/pipelines/{r.json()['id']}\n" # noqa: E501 ) return r.json() def _create_pipeline(self): """ Create a pipeline on the platform. """ print("🛠️ Creating pipeline on the platform...") # self.config_data is a dict. Pass it inside the key 'yaml_config' to the backend payload = { "yaml_config": json.dumps(self.config_data), "name": self.name, "local_id": self.local_id, } url = f"{self.client.host}/api/v1/pipelines/cli/create/" r = requests.post( url, json=payload, headers={"Authorization": f"Token {self.client.api_key}"}, ) if r.status_code not in [200, 201]: raise Exception(f"❌ Error occurred while creating pipeline. API response: {r.text}") if r.status_code == 200: print( f"🎉🎉🎉 Existing pipeline found! View your pipeline: https://app.embedchain.ai/pipelines/{r.json()['id']}\n" # noqa: E501 ) # noqa: E501 elif r.status_code == 201: print( f"🎉🎉🎉 Pipeline created successfully! View your pipeline: https://app.embedchain.ai/pipelines/{r.json()['id']}\n" # noqa: E501 ) return r.json() def _get_presigned_url(self, data_type, data_value): payload = {"data_type": data_type, "data_value": data_value} r = requests.post( f"{self.client.host}/api/v1/pipelines/{self.id}/cli/presigned_url/", json=payload, headers={"Authorization": f"Token {self.client.api_key}"}, ) r.raise_for_status() return r.json() def search(self, query, num_documents=3): """ Search for similar documents related to the query in the vector database. """ # Send anonymous telemetry self.telemetry.capture(event_name="search", properties=self._telemetry_props) # TODO: Search will call the endpoint rather than fetching the data from the db itself when deploy=True. if self.id is None: where = {"app_id": self.local_id} context = self.db.query( query, n_results=num_documents, where=where, citations=True, ) result = [] for c in context: result.append({"context": c[0], "metadata": c[1]}) return result else: # Make API call to the backend to get the results NotImplementedError("Search is not implemented yet for the prod mode.") def _upload_file_to_presigned_url(self, presigned_url, file_path): try: with open(file_path, "rb") as file: response = requests.put(presigned_url, data=file) response.raise_for_status() return response.status_code == 200 except Exception as e: self.logger.exception(f"Error occurred during file upload: {str(e)}") print("❌ Error occurred during file upload!") return False def _upload_data_to_pipeline(self, data_type, data_value, metadata=None): payload = { "data_type": data_type, "data_value": data_value, "metadata": metadata, } try: self._send_api_request(f"/api/v1/pipelines/{self.id}/cli/add/", payload) # print the local file path if user tries to upload a local file printed_value = metadata.get("file_path") if metadata.get("file_path") else data_value print(f"✅ Data of type: {data_type}, value: {printed_value} added successfully.") except Exception as e: print(f"❌ Error occurred during data upload for type {data_type}!. Error: {str(e)}") def _send_api_request(self, endpoint, payload): url = f"{self.client.host}{endpoint}" headers = {"Authorization": f"Token {self.client.api_key}"} response = requests.post(url, json=payload, headers=headers) response.raise_for_status() return response def _process_and_upload_data(self, data_hash, data_type, data_value): if os.path.isabs(data_value): presigned_url_data = self._get_presigned_url(data_type, data_value) presigned_url = presigned_url_data["presigned_url"] s3_key = presigned_url_data["s3_key"] if self._upload_file_to_presigned_url(presigned_url, file_path=data_value): metadata = {"file_path": data_value, "s3_key": s3_key} data_value = presigned_url else: self.logger.error(f"File upload failed for hash: {data_hash}") return False else: if data_type == "qna_pair": data_value = list(ast.literal_eval(data_value)) metadata = {} try: self._upload_data_to_pipeline(data_type, data_value, metadata) self._mark_data_as_uploaded(data_hash) return True except Exception: print(f"❌ Error occurred during data upload for hash {data_hash}!") return False def _mark_data_as_uploaded(self, data_hash): self.cursor.execute( "UPDATE data_sources SET is_uploaded = 1 WHERE hash = ? AND pipeline_id = ?", (data_hash, self.local_id), ) self.connection.commit() def get_data_sources(self): db_data = self.cursor.execute("SELECT * FROM data_sources WHERE pipeline_id = ?", (self.local_id,)).fetchall() data_sources = [] for data in db_data: data_sources.append({"data_type": data[2], "data_value": data[3], "metadata": data[4]}) return data_sources def deploy(self): if self.client is None: self._init_client() pipeline_data = self._create_pipeline() self.id = pipeline_data["id"] results = self.cursor.execute( "SELECT * FROM data_sources WHERE pipeline_id = ? AND is_uploaded = 0", (self.local_id,) # noqa:E501 ).fetchall() if len(results) > 0: print("🛠️ Adding data to your pipeline...") for result in results: data_hash, data_type, data_value = result[1], result[2], result[3] self._process_and_upload_data(data_hash, data_type, data_value) # Send anonymous telemetry self.telemetry.capture(event_name="deploy", properties=self._telemetry_props) @classmethod def from_config( cls, config_path: Optional[str] = None, config: Optional[dict[str, Any]] = None, auto_deploy: bool = False, yaml_path: Optional[str] = None, ): """ Instantiate a Pipeline object from a configuration. :param config_path: Path to the YAML or JSON configuration file. :type config_path: Optional[str] :param config: A dictionary containing the configuration. :type config: Optional[dict[str, Any]] :param auto_deploy: Whether to deploy the pipeline automatically, defaults to False :type auto_deploy: bool, optional :param yaml_path: (Deprecated) Path to the YAML configuration file. Use config_path instead. :type yaml_path: Optional[str] :return: An instance of the Pipeline class. :rtype: Pipeline """ # Backward compatibility for yaml_path if yaml_path and not config_path: config_path = yaml_path if config_path and config: raise ValueError("Please provide only one of config_path or config.") config_data = None if config_path: file_extension = os.path.splitext(config_path)[1] with open(config_path, "r", encoding="UTF-8") as file: if file_extension in [".yaml", ".yml"]: config_data = yaml.safe_load(file) elif file_extension == ".json": config_data = json.load(file) else: raise ValueError("config_path must be a path to a YAML or JSON file.") elif config and isinstance(config, dict): config_data = config else: logging.error( "Please provide either a config file path (YAML or JSON) or a config dictionary. Falling back to defaults because no config is provided.", # noqa: E501 ) config_data = {} try: validate_config(config_data) except Exception as e: raise Exception(f"Error occurred while validating the config. Error: {str(e)}") app_config_data = config_data.get("app", {}).get("config", {}) db_config_data = config_data.get("vectordb", {}) embedding_model_config_data = config_data.get("embedding_model", config_data.get("embedder", {})) llm_config_data = config_data.get("llm", {}) chunker_config_data = config_data.get("chunker", {}) cache_config_data = config_data.get("cache", None) app_config = AppConfig(**app_config_data) db_provider = db_config_data.get("provider", "chroma") db = VectorDBFactory.create(db_provider, db_config_data.get("config", {})) if llm_config_data: llm_provider = llm_config_data.get("provider", "openai") llm = LlmFactory.create(llm_provider, llm_config_data.get("config", {})) else: llm = None embedding_model_provider = embedding_model_config_data.get("provider", "openai") embedding_model = EmbedderFactory.create( embedding_model_provider, embedding_model_config_data.get("config", {}) ) if cache_config_data is not None: cache_config = CacheConfig.from_config(cache_config_data) else: cache_config = None # Send anonymous telemetry event_properties = {"init_type": "config_data"} AnonymousTelemetry().capture(event_name="init", properties=event_properties) return cls( config=app_config, llm=llm, db=db, embedding_model=embedding_model, config_data=config_data, auto_deploy=auto_deploy, chunker=chunker_config_data, cache_config=cache_config, ) def _eval(self, dataset: list[EvalData], metric: Union[BaseMetric, str]): """ Evaluate the app on a dataset for a given metric. """ metric_str = metric.name if isinstance(metric, BaseMetric) else metric eval_class_map = { EvalMetric.CONTEXT_RELEVANCY.value: ContextRelevance, EvalMetric.ANSWER_RELEVANCY.value: AnswerRelevance, EvalMetric.GROUNDEDNESS.value: Groundedness, } if metric_str in eval_class_map: return eval_class_map[metric_str]().evaluate(dataset) # Handle the case for custom metrics if isinstance(metric, BaseMetric): return metric.evaluate(dataset) else: raise ValueError(f"Invalid metric: {metric}") def evaluate( self, questions: Union[str, list[str]], metrics: Optional[list[Union[BaseMetric, str]]] = None, num_workers: int = 4, ): """ Evaluate the app on a question. param: questions: A question or a list of questions to evaluate. type: questions: Union[str, list[str]] param: metrics: A list of metrics to evaluate. Defaults to all metrics. type: metrics: Optional[list[Union[BaseMetric, str]]] param: num_workers: Number of workers to use for parallel processing. type: num_workers: int return: A dictionary containing the evaluation results. rtype: dict """ if "OPENAI_API_KEY" not in os.environ: raise ValueError("Please set the OPENAI_API_KEY environment variable with permission to use `gpt4` model.") queries, answers, contexts = [], [], [] if isinstance(questions, list): with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: future_to_data = {executor.submit(self.query, q, citations=True): q for q in questions} for future in tqdm( concurrent.futures.as_completed(future_to_data), total=len(future_to_data), desc="Getting answer and contexts for questions", ): question = future_to_data[future] queries.append(question) answer, context = future.result() answers.append(answer) contexts.append(list(map(lambda x: x[0], context))) else: answer, context = self.query(questions, citations=True) queries = [questions] answers = [answer] contexts = [list(map(lambda x: x[0], context))] metrics = metrics or [ EvalMetric.CONTEXT_RELEVANCY.value, EvalMetric.ANSWER_RELEVANCY.value, EvalMetric.GROUNDEDNESS.value, ] logging.info(f"Collecting data from {len(queries)} questions for evaluation...") dataset = [] for q, a, c in zip(queries, answers, contexts): dataset.append(EvalData(question=q, answer=a, contexts=c)) logging.info(f"Evaluating {len(dataset)} data points...") result = {} with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: future_to_metric = {executor.submit(self._eval, dataset, metric): metric for metric in metrics} for future in tqdm( concurrent.futures.as_completed(future_to_metric), total=len(future_to_metric), desc="Evaluating metrics", ): metric = future_to_metric[future] if isinstance(metric, BaseMetric): result[metric.name] = future.result() else: result[metric] = future.result() if self.config.collect_metrics: telemetry_props = self._telemetry_props metrics_names = [] for metric in metrics: if isinstance(metric, BaseMetric): metrics_names.append(metric.name) else: metrics_names.append(metric) telemetry_props["metrics"] = metrics_names self.telemetry.capture(event_name="evaluate", properties=telemetry_props) return result