from typing import Optional from embedchain.config import CustomAppConfig from embedchain.embedchain import EmbedChain from embedchain.embedder.base_embedder import BaseEmbedder from embedchain.helper_classes.json_serializable import register_deserializable from embedchain.llm.base_llm import BaseLlm from embedchain.vectordb.base_vector_db import BaseVectorDB @register_deserializable class CustomApp(EmbedChain): """ Embedchain's custom app allows for most flexibility. You can craft your own mix of various LLMs, vector databases and embedding model/functions. Methods: add(source, data_type): adds the data from the given URL to the vector db. query(query): finds answer to the given query using vector database and LLM. chat(query): finds answer to the given query using vector database and LLM, with conversation history. """ def __init__( self, config: Optional[CustomAppConfig] = None, llm: BaseLlm = None, db: BaseVectorDB = None, embedder: BaseEmbedder = None, system_prompt: Optional[str] = None, ): """ Initialize a new `CustomApp` instance. You have to choose a LLM, database and embedder. :param config: Config for the app instance. This is the most basic configuration, that does not fall into the LLM, database or embedder category, defaults to None :type config: Optional[CustomAppConfig], optional :param llm: LLM Class instance. example: `from embedchain.llm.openai_llm import OpenAiLlm`, defaults to None :type llm: BaseLlm :param db: The database to use for storing and retrieving embeddings, example: `from embedchain.vectordb.chroma_db import ChromaDb`, defaults to None :type db: BaseVectorDB :param embedder: The embedder (embedding model and function) use to calculate embeddings. example: `from embedchain.embedder.gpt4all_embedder import GPT4AllEmbedder`, defaults to None :type embedder: BaseEmbedder :param system_prompt: System prompt that will be provided to the LLM as such, defaults to None :type system_prompt: Optional[str], optional :raises ValueError: LLM, database or embedder has not been defined. :raises TypeError: LLM, database or embedder is not a valid class instance. """ # Config is not required, it has a default if config is None: config = CustomAppConfig() if llm is None: raise ValueError("LLM must be provided for custom app. Please import from `embedchain.llm`.") if db is None: raise ValueError("Database must be provided for custom app. Please import from `embedchain.vectordb`.") if embedder is None: raise ValueError("Embedder must be provided for custom app. Please import from `embedchain.embedder`.") if not isinstance(config, CustomAppConfig): raise TypeError( "Config is not a `CustomAppConfig` instance. " "Please make sure the type is right and that you are passing an instance." ) if not isinstance(llm, BaseLlm): raise TypeError( "LLM is not a `BaseLlm` instance. " "Please make sure the type is right and that you are passing an instance." ) if not isinstance(db, BaseVectorDB): raise TypeError( "Database is not a `BaseVectorDB` instance. " "Please make sure the type is right and that you are passing an instance." ) if not isinstance(embedder, BaseEmbedder): raise TypeError( "Embedder is not a `BaseEmbedder` instance. " "Please make sure the type is right and that you are passing an instance." ) super().__init__(config=config, llm=llm, db=db, embedder=embedder, system_prompt=system_prompt)