import logging import os from typing import Optional from embedchain.config import BaseLlmConfig from embedchain.helpers.json_serializable import register_deserializable from embedchain.llm.base import BaseLlm @register_deserializable class AnthropicLlm(BaseLlm): def __init__(self, config: Optional[BaseLlmConfig] = None): if "ANTHROPIC_API_KEY" not in os.environ: raise ValueError("Please set the ANTHROPIC_API_KEY environment variable.") super().__init__(config=config) def get_llm_model_answer(self, prompt): return AnthropicLlm._get_answer(prompt=prompt, config=self.config) @staticmethod def _get_answer(prompt: str, config: BaseLlmConfig) -> str: from langchain.chat_models import ChatAnthropic chat = ChatAnthropic( anthropic_api_key=os.environ["ANTHROPIC_API_KEY"], temperature=config.temperature, model=config.model ) if config.max_tokens and config.max_tokens != 1000: logging.warning("Config option `max_tokens` is not supported by this model.") messages = BaseLlm._get_messages(prompt, system_prompt=config.system_prompt) return chat(messages).content