{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "b02n_zJ_hl3d" }, "source": [ "## Cookbook for using GPT4All with Embedchain" ] }, { "cell_type": "markdown", "metadata": { "id": "gyJ6ui2vhtMY" }, "source": [ "### Step-1: Install embedchain package" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "-NbXjAdlh0vJ", "outputId": "077fa470-b51f-4c29-8c22-9c5f0a9cef47" }, "outputs": [], "source": [ "!pip install embedchain" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install embedchain[dataloaders]" ] }, { "cell_type": "markdown", "metadata": { "id": "nGnpSYAAh2bQ" }, "source": [ "### Step-2: Set GPT4ALL related environment variables and install dependencies\n", "\n", "GPT4All is free for all and doesn't require any API Key to use it. Just import the dependencies." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "dGOE4u3dC6at", "outputId": "c1c0087b-3f14-49fa-fb86-a4a3391ba14c" }, "outputs": [], "source": [ "!pip install --upgrade embedchain[opensource]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "0fBdQ9GAiRvK" }, "outputs": [], "source": [ "from embedchain import Pipeline as App" ] }, { "cell_type": "markdown", "metadata": { "id": "Ns6RhPfbiitr" }, "source": [ "### Step-3: Define your llm and embedding model config" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "S9CkxVjriotB" }, "outputs": [], "source": [ "config = \"\"\"\n", "llm:\n", " provider: gpt4all\n", " config:\n", " model: 'orca-mini-3b-gguf2-q4_0.gguf'\n", " temperature: 0.5\n", " max_tokens: 1000\n", " top_p: 1\n", " stream: false\n", "\n", "embedder:\n", " provider: gpt4all\n", " config:\n", " model: 'all-MiniLM-L6-v2'\n", "\"\"\"\n", "\n", "# Write the multi-line string to a YAML file\n", "with open('gpt4all.yaml', 'w') as file:\n", " file.write(config)" ] }, { "cell_type": "markdown", "metadata": { "id": "PGt6uPLIi1CS" }, "source": [ "### Step-4 Create embedchain app based on the config" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Amzxk3m-i3tD", "outputId": "775db99b-e217-47db-f87f-788495d86f26" }, "outputs": [], "source": [ "app = App.from_config(yaml_path=\"gpt4all.yaml\")" ] }, { "cell_type": "markdown", "metadata": { "id": "XNXv4yZwi7ef" }, "source": [ "### Step-5: Add data sources to your app" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 52 }, "id": "Sn_0rx9QjIY9", "outputId": "c6514f17-3cb2-4fbc-c80d-79b3a311ff30" }, "outputs": [], "source": [ "app.add(\"https://www.forbes.com/profile/elon-musk\")" ] }, { "cell_type": "markdown", "metadata": { "id": "_7W6fDeAjMAP" }, "source": [ "### Step-6: All set. Now start asking questions related to your data" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 480 }, "id": "cvIK7dWRjN_f", "outputId": "c74f356a-d2fb-426d-b36c-d84911397338" }, "outputs": [], "source": [ "while(True):\n", " question = input(\"Enter question: \")\n", " if question in ['q', 'exit', 'quit']:\n", " break\n", " answer = app.query(question)\n", " print(answer)" ] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 0 }