factory.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107
  1. import importlib
  2. def load_class(class_type):
  3. module_path, class_name = class_type.rsplit(".", 1)
  4. module = importlib.import_module(module_path)
  5. return getattr(module, class_name)
  6. class LlmFactory:
  7. provider_to_class = {
  8. "anthropic": "embedchain.llm.anthropic.AnthropicLlm",
  9. "azure_openai": "embedchain.llm.azure_openai.AzureOpenAILlm",
  10. "cohere": "embedchain.llm.cohere.CohereLlm",
  11. "together": "embedchain.llm.together.TogetherLlm",
  12. "gpt4all": "embedchain.llm.gpt4all.GPT4ALLLlm",
  13. "ollama": "embedchain.llm.ollama.OllamaLlm",
  14. "huggingface": "embedchain.llm.huggingface.HuggingFaceLlm",
  15. "jina": "embedchain.llm.jina.JinaLlm",
  16. "llama2": "embedchain.llm.llama2.Llama2Llm",
  17. "openai": "embedchain.llm.openai.OpenAILlm",
  18. "vertexai": "embedchain.llm.vertex_ai.VertexAILlm",
  19. "google": "embedchain.llm.google.GoogleLlm",
  20. "aws_bedrock": "embedchain.llm.aws_bedrock.AWSBedrockLlm",
  21. "mistralai": "embedchain.llm.mistralai.MistralAILlm",
  22. }
  23. provider_to_config_class = {
  24. "embedchain": "embedchain.config.llm.base.BaseLlmConfig",
  25. "openai": "embedchain.config.llm.base.BaseLlmConfig",
  26. "anthropic": "embedchain.config.llm.base.BaseLlmConfig",
  27. }
  28. @classmethod
  29. def create(cls, provider_name, config_data):
  30. class_type = cls.provider_to_class.get(provider_name)
  31. # Default to embedchain base config if the provider is not in the config map
  32. config_name = "embedchain" if provider_name not in cls.provider_to_config_class else provider_name
  33. config_class_type = cls.provider_to_config_class.get(config_name)
  34. if class_type:
  35. llm_class = load_class(class_type)
  36. llm_config_class = load_class(config_class_type)
  37. return llm_class(config=llm_config_class(**config_data))
  38. else:
  39. raise ValueError(f"Unsupported Llm provider: {provider_name}")
  40. class EmbedderFactory:
  41. provider_to_class = {
  42. "azure_openai": "embedchain.embedder.openai.OpenAIEmbedder",
  43. "gpt4all": "embedchain.embedder.gpt4all.GPT4AllEmbedder",
  44. "huggingface": "embedchain.embedder.huggingface.HuggingFaceEmbedder",
  45. "openai": "embedchain.embedder.openai.OpenAIEmbedder",
  46. "vertexai": "embedchain.embedder.vertexai.VertexAIEmbedder",
  47. "google": "embedchain.embedder.google.GoogleAIEmbedder",
  48. "mistralai": "embedchain.embedder.mistralai.MistralAIEmbedder",
  49. }
  50. provider_to_config_class = {
  51. "azure_openai": "embedchain.config.embedder.base.BaseEmbedderConfig",
  52. "openai": "embedchain.config.embedder.base.BaseEmbedderConfig",
  53. "gpt4all": "embedchain.config.embedder.base.BaseEmbedderConfig",
  54. "google": "embedchain.config.embedder.google.GoogleAIEmbedderConfig",
  55. }
  56. @classmethod
  57. def create(cls, provider_name, config_data):
  58. class_type = cls.provider_to_class.get(provider_name)
  59. # Default to openai config if the provider is not in the config map
  60. config_name = "openai" if provider_name not in cls.provider_to_config_class else provider_name
  61. config_class_type = cls.provider_to_config_class.get(config_name)
  62. if class_type:
  63. embedder_class = load_class(class_type)
  64. embedder_config_class = load_class(config_class_type)
  65. return embedder_class(config=embedder_config_class(**config_data))
  66. else:
  67. raise ValueError(f"Unsupported Embedder provider: {provider_name}")
  68. class VectorDBFactory:
  69. provider_to_class = {
  70. "chroma": "embedchain.vectordb.chroma.ChromaDB",
  71. "elasticsearch": "embedchain.vectordb.elasticsearch.ElasticsearchDB",
  72. "opensearch": "embedchain.vectordb.opensearch.OpenSearchDB",
  73. "pinecone": "embedchain.vectordb.pinecone.PineconeDB",
  74. "qdrant": "embedchain.vectordb.qdrant.QdrantDB",
  75. "weaviate": "embedchain.vectordb.weaviate.WeaviateDB",
  76. "zilliz": "embedchain.vectordb.zilliz.ZillizVectorDB",
  77. }
  78. provider_to_config_class = {
  79. "chroma": "embedchain.config.vectordb.chroma.ChromaDbConfig",
  80. "elasticsearch": "embedchain.config.vectordb.elasticsearch.ElasticsearchDBConfig",
  81. "opensearch": "embedchain.config.vectordb.opensearch.OpenSearchDBConfig",
  82. "pinecone": "embedchain.config.vectordb.pinecone.PineconeDBConfig",
  83. "qdrant": "embedchain.config.vectordb.qdrant.QdrantDBConfig",
  84. "weaviate": "embedchain.config.vectordb.weaviate.WeaviateDBConfig",
  85. "zilliz": "embedchain.config.vectordb.zilliz.ZillizDBConfig",
  86. }
  87. @classmethod
  88. def create(cls, provider_name, config_data):
  89. class_type = cls.provider_to_class.get(provider_name)
  90. config_class_type = cls.provider_to_config_class.get(provider_name)
  91. if class_type:
  92. embedder_class = load_class(class_type)
  93. embedder_config_class = load_class(config_class_type)
  94. return embedder_class(config=embedder_config_class(**config_data))
  95. else:
  96. raise ValueError(f"Unsupported Embedder provider: {provider_name}")