huggingface.py 2.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. import importlib
  2. import logging
  3. import os
  4. from typing import Optional
  5. from langchain.llms.huggingface_endpoint import HuggingFaceEndpoint
  6. from langchain.llms.huggingface_hub import HuggingFaceHub
  7. from embedchain.config import BaseLlmConfig
  8. from embedchain.helpers.json_serializable import register_deserializable
  9. from embedchain.llm.base import BaseLlm
  10. @register_deserializable
  11. class HuggingFaceLlm(BaseLlm):
  12. def __init__(self, config: Optional[BaseLlmConfig] = None):
  13. if "HUGGINGFACE_ACCESS_TOKEN" not in os.environ:
  14. raise ValueError("Please set the HUGGINGFACE_ACCESS_TOKEN environment variable.")
  15. try:
  16. importlib.import_module("huggingface_hub")
  17. except ModuleNotFoundError:
  18. raise ModuleNotFoundError(
  19. "The required dependencies for HuggingFaceHub are not installed."
  20. 'Please install with `pip install --upgrade "embedchain[huggingface-hub]"`'
  21. ) from None
  22. super().__init__(config=config)
  23. def get_llm_model_answer(self, prompt):
  24. if self.config.system_prompt:
  25. raise ValueError("HuggingFaceLlm does not support `system_prompt`")
  26. return HuggingFaceLlm._get_answer(prompt=prompt, config=self.config)
  27. @staticmethod
  28. def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
  29. if config.model:
  30. return HuggingFaceLlm._from_model(prompt=prompt, config=config)
  31. elif config.endpoint:
  32. return HuggingFaceLlm._from_endpoint(prompt=prompt, config=config)
  33. else:
  34. raise ValueError("Either `model` or `endpoint` must be set")
  35. @staticmethod
  36. def _from_model(prompt: str, config: BaseLlmConfig) -> str:
  37. model_kwargs = {
  38. "temperature": config.temperature or 0.1,
  39. "max_new_tokens": config.max_tokens,
  40. }
  41. if 0.0 < config.top_p < 1.0:
  42. model_kwargs["top_p"] = config.top_p
  43. else:
  44. raise ValueError("`top_p` must be > 0.0 and < 1.0")
  45. model = config.model or "google/flan-t5-xxl"
  46. logging.info(f"Using HuggingFaceHub with model {model}")
  47. llm = HuggingFaceHub(
  48. huggingfacehub_api_token=os.environ["HUGGINGFACE_ACCESS_TOKEN"],
  49. repo_id=model,
  50. model_kwargs=model_kwargs,
  51. )
  52. return llm(prompt)
  53. @staticmethod
  54. def _from_endpoint(prompt: str, config: BaseLlmConfig) -> str:
  55. llm = HuggingFaceEndpoint(
  56. huggingfacehub_api_token=os.environ["HUGGINGFACE_ACCESS_TOKEN"],
  57. endpoint_url=config.endpoint,
  58. task="text-generation",
  59. model_kwargs=config.model_kwargs,
  60. )
  61. return llm(prompt)