openai.py 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869
  1. import json
  2. import os
  3. from typing import Any, Callable, Dict, Optional, Type, Union
  4. from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
  5. from langchain.schema import BaseMessage, HumanMessage, SystemMessage
  6. from langchain_core.tools import BaseTool
  7. from langchain_openai import ChatOpenAI
  8. from pydantic import BaseModel
  9. from embedchain.config import BaseLlmConfig
  10. from embedchain.helpers.json_serializable import register_deserializable
  11. from embedchain.llm.base import BaseLlm
  12. @register_deserializable
  13. class OpenAILlm(BaseLlm):
  14. def __init__(
  15. self,
  16. config: Optional[BaseLlmConfig] = None,
  17. tools: Optional[Union[Dict[str, Any], Type[BaseModel], Callable[..., Any], BaseTool]] = None,
  18. ):
  19. self.tools = tools
  20. super().__init__(config=config)
  21. def get_llm_model_answer(self, prompt) -> str:
  22. response = self._get_answer(prompt, self.config)
  23. return response
  24. def _get_answer(self, prompt: str, config: BaseLlmConfig) -> str:
  25. messages = []
  26. if config.system_prompt:
  27. messages.append(SystemMessage(content=config.system_prompt))
  28. messages.append(HumanMessage(content=prompt))
  29. kwargs = {
  30. "model": config.model or "gpt-3.5-turbo",
  31. "temperature": config.temperature,
  32. "max_tokens": config.max_tokens,
  33. "model_kwargs": {},
  34. }
  35. api_key = config.api_key or os.environ["OPENAI_API_KEY"]
  36. if config.top_p:
  37. kwargs["model_kwargs"]["top_p"] = config.top_p
  38. if config.stream:
  39. callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()]
  40. chat = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=callbacks, api_key=api_key)
  41. else:
  42. chat = ChatOpenAI(**kwargs, api_key=api_key)
  43. if self.tools:
  44. return self._query_function_call(chat, self.tools, messages)
  45. return chat.invoke(messages).content
  46. def _query_function_call(
  47. self,
  48. chat: ChatOpenAI,
  49. tools: Optional[Union[Dict[str, Any], Type[BaseModel], Callable[..., Any], BaseTool]],
  50. messages: list[BaseMessage],
  51. ) -> str:
  52. from langchain.output_parsers.openai_tools import JsonOutputToolsParser
  53. from langchain_core.utils.function_calling import \
  54. convert_to_openai_tool
  55. openai_tools = [convert_to_openai_tool(tools)]
  56. chat = chat.bind(tools=openai_tools).pipe(JsonOutputToolsParser())
  57. try:
  58. return json.dumps(chat.invoke(messages)[0])
  59. except IndexError:
  60. return "Input could not be mapped to the function!"