Nenhuma descrição

cachho 07ba65d88d chore: documentation handling (#296) 2 anos atrás
.github 07ba65d88d chore: documentation handling (#296) 2 anos atrás
docs a548863a09 Feature: Add support for loading docs website (#293) 2 anos atrás
embedchain a548863a09 Feature: Add support for loading docs website (#293) 2 anos atrás
notebooks cf9638e7b2 example: fix notebook for docs site loader (#294) 2 anos atrás
tests ac68986404 Add project tools and contributing guidelines (#281) 2 anos atrás
.env.example ac68986404 Add project tools and contributing guidelines (#281) 2 anos atrás
.gitignore c595003481 docs: setup docs for embedchain (#287) 2 anos atrás
.pre-commit-config.yaml ac68986404 Add project tools and contributing guidelines (#281) 2 anos atrás
CITATION.cff 736b645fea Add citation (#137) 2 anos atrás
CONTRIBUTING.md c595003481 docs: setup docs for embedchain (#287) 2 anos atrás
LICENSE 65d1ff37e8 Create LICENSE 2 anos atrás
Makefile 05a4eef6ae chores: run lint and format (#284) 2 anos atrás
README.md e24063caff docs: fix typos in readme (#288) 2 anos atrás
poetry.toml ac68986404 Add project tools and contributing guidelines (#281) 2 anos atrás
pyproject.toml ac68986404 Add project tools and contributing guidelines (#281) 2 anos atrás
setup.py a548863a09 Feature: Add support for loading docs website (#293) 2 anos atrás

README.md

embedchain

PyPI Discord Twitter Substack Open in Colab

Embedchain is a framework to easily create LLM powered bots over any dataset. If you want a javascript version, check out embedchain-js

🔧 Quick install

pip install embedchain

🔍 Demo

Try out embedchain in your browser:

Open in Colab

📖 Documentation

The documentation for embedchain can be found at docs.embedchain.ai.

💻 Usage

Embedchain empowers you to create chatbot models similar to ChatGPT, using your own evolving dataset.

Queries

For example, you can use Embedchain to create an Elon Musk bot using the following code:

import os
from embedchain import App

# Create a bot instance
os.environ["OPENAI_API_KEY"] = "YOUR API KEY"
elon_bot = App()

# Embed online resources
elon_bot.add("web_page", "https://en.wikipedia.org/wiki/Elon_Musk")
elon_bot.add("web_page", "https://tesla.com/elon-musk")
elon_bot.add("youtube_video", "https://www.youtube.com/watch?v=MxZpaJK74Y4")

# Query the bot
elon_bot.query("How many companies does Elon Musk run?")
# Answer: Elon Musk runs four companies: Tesla, SpaceX, Neuralink, and The Boring Company

🤝 Contributing

Contributions are welcome! Please check out the issues on the repository, and feel free to open a pull request. For more information, please see the contributing guidelines.

Citation

If you utilize this repository, please consider citing it with:

@misc{embedchain,
  author = {Taranjeet Singh},
  title = {Embechain: Framework to easily create LLM powered bots over any dataset},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/embedchain/embedchain}},
}