12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- ---
- title: '🚀 Quickstart'
- description: '💡 Start building LLM powered apps under 30 seconds'
- ---
- Embedchain is a Data Platform for LLMs - load, index, retrieve, and sync any unstructured data. Using embedchain, you can easily create LLM powered apps over any data.
- Install embedchain python package:
- ```bash
- pip install embedchain
- ```
- <Tip>
- Embedchain now supports OpenAI's latest `gpt-4-turbo` model. Checkout the [docs here](/get-started/faq#how-to-use-gpt-4-turbo-model-released-on-openai-devday) on how to use it.
- </Tip>
- Creating an app involves 3 steps:
- <Steps>
- <Step title="⚙️ Import app instance">
- ```python
- from embedchain import Pipeline as App
- app = App()
- ```
- </Step>
- <Step title="🗃️ Add data sources">
- ```python
- # Add different data sources
- app.add("https://en.wikipedia.org/wiki/Elon_Musk")
- app.add("https://www.forbes.com/profile/elon-musk")
- # You can also add local data sources such as pdf, csv files etc.
- # app.add("/path/to/file.pdf")
- ```
- </Step>
- <Step title="💬 Query or chat or search context on your data">
- ```python
- app.query("What is the net worth of Elon Musk today?")
- # Answer: The net worth of Elon Musk today is $258.7 billion.
- ```
- </Step>
- <Step title="🚀 (Optional) Deploy your pipeline to Embedchain Platform">
- ```python
- app.deploy()
- # 🔑 Enter your Embedchain API key. You can find the API key at https://app.embedchain.ai/settings/keys/
- # ec-xxxxxx
- # 🛠️ Creating pipeline on the platform...
- # 🎉🎉🎉 Pipeline created successfully! View your pipeline: https://app.embedchain.ai/pipelines/xxxxx
- # 🛠️ Adding data to your pipeline...
- # ✅ Data of type: web_page, value: https://www.forbes.com/profile/elon-musk added successfully.
- ```
- </Step>
- </Steps>
- Putting it together, you can run your first app using the following code. Make sure to set the `OPENAI_API_KEY` 🔑 environment variable in the code.
- ```python
- import os
- from embedchain import Pipeline as App
- os.environ["OPENAI_API_KEY"] = "xxx"
- app = App()
- # Add different data sources
- app.add("https://en.wikipedia.org/wiki/Elon_Musk")
- app.add("https://www.forbes.com/profile/elon-musk")
- # You can also add local data sources such as pdf, csv files etc.
- # app.add("/path/to/file.pdf")
- response = app.query("What is the net worth of Elon Musk today?")
- print(response)
- # Answer: The net worth of Elon Musk today is $258.7 billion.
- app.deploy()
- # 🔑 Enter your Embedchain API key. You can find the API key at https://app.embedchain.ai/settings/keys/
- # ec-xxxxxx
- # 🛠️ Creating pipeline on the platform...
- # 🎉🎉🎉 Pipeline created successfully! View your pipeline: https://app.embedchain.ai/pipelines/xxxxx
- # 🛠️ Adding data to your pipeline...
- # ✅ Data of type: web_page, value: https://www.forbes.com/profile/elon-musk added successfully.
- ```
- You can try it out yourself using the following Google Colab notebook:
- <a href="https://colab.research.google.com/drive/17ON1LPonnXAtLaZEebnOktstB_1cJJmh?usp=sharing">
- <img src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Open in Colab" />
- </a>
|