factory.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
  1. import importlib
  2. def load_class(class_type):
  3. module_path, class_name = class_type.rsplit(".", 1)
  4. module = importlib.import_module(module_path)
  5. return getattr(module, class_name)
  6. class LlmFactory:
  7. provider_to_class = {
  8. "anthropic": "embedchain.llm.anthropic.AnthropicLlm",
  9. "azure_openai": "embedchain.llm.azure_openai.AzureOpenAILlm",
  10. "cohere": "embedchain.llm.cohere.CohereLlm",
  11. "gpt4all": "embedchain.llm.gpt4all.GPT4ALLLlm",
  12. "huggingface": "embedchain.llm.huggingface.HuggingFaceLlm",
  13. "jina": "embedchain.llm.jina.JinaLlm",
  14. "llama2": "embedchain.llm.llama2.Llama2Llm",
  15. "openai": "embedchain.llm.openai.OpenAILlm",
  16. "vertexai": "embedchain.llm.vertex_ai.VertexAILlm",
  17. "google": "embedchain.llm.google.GoogleLlm",
  18. }
  19. provider_to_config_class = {
  20. "embedchain": "embedchain.config.llm.base.BaseLlmConfig",
  21. "openai": "embedchain.config.llm.base.BaseLlmConfig",
  22. "anthropic": "embedchain.config.llm.base.BaseLlmConfig",
  23. }
  24. @classmethod
  25. def create(cls, provider_name, config_data):
  26. class_type = cls.provider_to_class.get(provider_name)
  27. # Default to embedchain base config if the provider is not in the config map
  28. config_name = "embedchain" if provider_name not in cls.provider_to_config_class else provider_name
  29. config_class_type = cls.provider_to_config_class.get(config_name)
  30. if class_type:
  31. llm_class = load_class(class_type)
  32. llm_config_class = load_class(config_class_type)
  33. return llm_class(config=llm_config_class(**config_data))
  34. else:
  35. raise ValueError(f"Unsupported Llm provider: {provider_name}")
  36. class EmbedderFactory:
  37. provider_to_class = {
  38. "azure_openai": "embedchain.embedder.openai.OpenAIEmbedder",
  39. "gpt4all": "embedchain.embedder.gpt4all.GPT4AllEmbedder",
  40. "huggingface": "embedchain.embedder.huggingface.HuggingFaceEmbedder",
  41. "openai": "embedchain.embedder.openai.OpenAIEmbedder",
  42. "vertexai": "embedchain.embedder.vertexai.VertexAIEmbedder",
  43. }
  44. provider_to_config_class = {
  45. "azure_openai": "embedchain.config.embedder.base.BaseEmbedderConfig",
  46. "openai": "embedchain.config.embedder.base.BaseEmbedderConfig",
  47. "gpt4all": "embedchain.config.embedder.base.BaseEmbedderConfig",
  48. }
  49. @classmethod
  50. def create(cls, provider_name, config_data):
  51. class_type = cls.provider_to_class.get(provider_name)
  52. # Default to openai config if the provider is not in the config map
  53. config_name = "openai" if provider_name not in cls.provider_to_config_class else provider_name
  54. config_class_type = cls.provider_to_config_class.get(config_name)
  55. if class_type:
  56. embedder_class = load_class(class_type)
  57. embedder_config_class = load_class(config_class_type)
  58. return embedder_class(config=embedder_config_class(**config_data))
  59. else:
  60. raise ValueError(f"Unsupported Embedder provider: {provider_name}")
  61. class VectorDBFactory:
  62. provider_to_class = {
  63. "chroma": "embedchain.vectordb.chroma.ChromaDB",
  64. "elasticsearch": "embedchain.vectordb.elasticsearch.ElasticsearchDB",
  65. "opensearch": "embedchain.vectordb.opensearch.OpenSearchDB",
  66. "pinecone": "embedchain.vectordb.pinecone.PineconeDB",
  67. "qdrant": "embedchain.vectordb.qdrant.QdrantDB",
  68. "weaviate": "embedchain.vectordb.weaviate.WeaviateDB",
  69. "zilliz": "embedchain.vectordb.zilliz.ZillizVectorDB",
  70. }
  71. provider_to_config_class = {
  72. "chroma": "embedchain.config.vectordb.chroma.ChromaDbConfig",
  73. "elasticsearch": "embedchain.config.vectordb.elasticsearch.ElasticsearchDBConfig",
  74. "opensearch": "embedchain.config.vectordb.opensearch.OpenSearchDBConfig",
  75. "pinecone": "embedchain.config.vectordb.pinecone.PineconeDBConfig",
  76. "qdrant": "embedchain.config.vectordb.qdrant.QdrantDBConfig",
  77. "weaviate": "embedchain.config.vectordb.weaviate.WeaviateDBConfig",
  78. "zilliz": "embedchain.config.vectordb.zilliz.ZillizDBConfig",
  79. }
  80. @classmethod
  81. def create(cls, provider_name, config_data):
  82. class_type = cls.provider_to_class.get(provider_name)
  83. config_class_type = cls.provider_to_config_class.get(provider_name)
  84. if class_type:
  85. embedder_class = load_class(class_type)
  86. embedder_config_class = load_class(config_class_type)
  87. return embedder_class(config=embedder_config_class(**config_data))
  88. else:
  89. raise ValueError(f"Unsupported Embedder provider: {provider_name}")