base.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304
  1. import logging
  2. from typing import Any, Dict, Generator, List, Optional
  3. from langchain.schema import BaseMessage as LCBaseMessage
  4. from embedchain.config import BaseLlmConfig
  5. from embedchain.config.llm.base import (DEFAULT_PROMPT,
  6. DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE,
  7. DOCS_SITE_PROMPT_TEMPLATE)
  8. from embedchain.helpers.json_serializable import JSONSerializable
  9. from embedchain.memory.base import ECChatMemory
  10. from embedchain.memory.message import ChatMessage
  11. class BaseLlm(JSONSerializable):
  12. def __init__(self, config: Optional[BaseLlmConfig] = None):
  13. """Initialize a base LLM class
  14. :param config: LLM configuration option class, defaults to None
  15. :type config: Optional[BaseLlmConfig], optional
  16. """
  17. if config is None:
  18. self.config = BaseLlmConfig()
  19. else:
  20. self.config = config
  21. self.memory = ECChatMemory()
  22. self.is_docs_site_instance = False
  23. self.online = False
  24. self.history: Any = None
  25. def get_llm_model_answer(self):
  26. """
  27. Usually implemented by child class
  28. """
  29. raise NotImplementedError
  30. def set_history(self, history: Any):
  31. """
  32. Provide your own history.
  33. Especially interesting for the query method, which does not internally manage conversation history.
  34. :param history: History to set
  35. :type history: Any
  36. """
  37. self.history = history
  38. def update_history(self, app_id: str):
  39. """Update class history attribute with history in memory (for chat method)"""
  40. chat_history = self.memory.get_recent_memories(app_id=app_id, num_rounds=10)
  41. if chat_history:
  42. self.set_history([str(history) for history in chat_history])
  43. def add_history(self, app_id: str, question: str, answer: str, metadata: Optional[Dict[str, Any]] = None):
  44. chat_message = ChatMessage()
  45. chat_message.add_user_message(question, metadata=metadata)
  46. chat_message.add_ai_message(answer, metadata=metadata)
  47. self.memory.add(app_id=app_id, chat_message=chat_message)
  48. self.update_history(app_id=app_id)
  49. def generate_prompt(self, input_query: str, contexts: List[str], **kwargs: Dict[str, Any]) -> str:
  50. """
  51. Generates a prompt based on the given query and context, ready to be
  52. passed to an LLM
  53. :param input_query: The query to use.
  54. :type input_query: str
  55. :param contexts: List of similar documents to the query used as context.
  56. :type contexts: List[str]
  57. :return: The prompt
  58. :rtype: str
  59. """
  60. context_string = (" | ").join(contexts)
  61. web_search_result = kwargs.get("web_search_result", "")
  62. if web_search_result:
  63. context_string = self._append_search_and_context(context_string, web_search_result)
  64. template_contains_history = self.config._validate_template_history(self.config.template)
  65. if template_contains_history:
  66. # Template contains history
  67. # If there is no history yet, we insert `- no history -`
  68. prompt = self.config.template.substitute(
  69. context=context_string, query=input_query, history=self.history or "- no history -"
  70. )
  71. elif self.history and not template_contains_history:
  72. # History is present, but not included in the template.
  73. # check if it's the default template without history
  74. if (
  75. not self.config._validate_template_history(self.config.template)
  76. and self.config.template.template == DEFAULT_PROMPT
  77. ):
  78. # swap in the template with history
  79. prompt = DEFAULT_PROMPT_WITH_HISTORY_TEMPLATE.substitute(
  80. context=context_string, query=input_query, history=self.history
  81. )
  82. else:
  83. # If we can't swap in the default, we still proceed but tell users that the history is ignored.
  84. logging.warning(
  85. "Your bot contains a history, but template does not include `$history` key. History is ignored."
  86. )
  87. prompt = self.config.template.substitute(context=context_string, query=input_query)
  88. else:
  89. # basic use case, no history.
  90. prompt = self.config.template.substitute(context=context_string, query=input_query)
  91. return prompt
  92. def _append_search_and_context(self, context: str, web_search_result: str) -> str:
  93. """Append web search context to existing context
  94. :param context: Existing context
  95. :type context: str
  96. :param web_search_result: Web search result
  97. :type web_search_result: str
  98. :return: Concatenated web search result
  99. :rtype: str
  100. """
  101. return f"{context}\nWeb Search Result: {web_search_result}"
  102. def get_answer_from_llm(self, prompt: str):
  103. """
  104. Gets an answer based on the given query and context by passing it
  105. to an LLM.
  106. :param prompt: Gets an answer based on the given query and context by passing it to an LLM.
  107. :type prompt: str
  108. :return: The answer.
  109. :rtype: _type_
  110. """
  111. return self.get_llm_model_answer(prompt)
  112. def access_search_and_get_results(self, input_query: str):
  113. """
  114. Search the internet for additional context
  115. :param input_query: search query
  116. :type input_query: str
  117. :return: Search results
  118. :rtype: Unknown
  119. """
  120. try:
  121. from langchain.tools import DuckDuckGoSearchRun
  122. except ImportError:
  123. raise ImportError(
  124. 'Searching requires extra dependencies. Install with `pip install --upgrade "embedchain[dataloaders]"`'
  125. ) from None
  126. search = DuckDuckGoSearchRun()
  127. logging.info(f"Access search to get answers for {input_query}")
  128. return search.run(input_query)
  129. def _stream_query_response(self, answer: Any) -> Generator[Any, Any, None]:
  130. """Generator to be used as streaming response
  131. :param answer: Answer chunk from llm
  132. :type answer: Any
  133. :yield: Answer chunk from llm
  134. :rtype: Generator[Any, Any, None]
  135. """
  136. streamed_answer = ""
  137. for chunk in answer:
  138. streamed_answer = streamed_answer + chunk
  139. yield chunk
  140. logging.info(f"Answer: {streamed_answer}")
  141. def _stream_chat_response(self, answer: Any) -> Generator[Any, Any, None]:
  142. """Generator to be used as streaming response
  143. :param answer: Answer chunk from llm
  144. :type answer: Any
  145. :yield: Answer chunk from llm
  146. :rtype: Generator[Any, Any, None]
  147. """
  148. streamed_answer = ""
  149. for chunk in answer:
  150. streamed_answer = streamed_answer + chunk
  151. yield chunk
  152. logging.info(f"Answer: {streamed_answer}")
  153. def query(self, input_query: str, contexts: List[str], config: BaseLlmConfig = None, dry_run=False):
  154. """
  155. Queries the vector database based on the given input query.
  156. Gets relevant doc based on the query and then passes it to an
  157. LLM as context to get the answer.
  158. :param input_query: The query to use.
  159. :type input_query: str
  160. :param contexts: Embeddings retrieved from the database to be used as context.
  161. :type contexts: List[str]
  162. :param config: The `BaseLlmConfig` instance to use as configuration options. This is used for one method call.
  163. To persistently use a config, declare it during app init., defaults to None
  164. :type config: Optional[BaseLlmConfig], optional
  165. :param dry_run: A dry run does everything except send the resulting prompt to
  166. the LLM. The purpose is to test the prompt, not the response., defaults to False
  167. :type dry_run: bool, optional
  168. :return: The answer to the query or the dry run result
  169. :rtype: str
  170. """
  171. try:
  172. if config:
  173. # A config instance passed to this method will only be applied temporarily, for one call.
  174. # So we will save the previous config and restore it at the end of the execution.
  175. # For this we use the serializer.
  176. prev_config = self.config.serialize()
  177. self.config = config
  178. if config is not None and config.query_type == "Images":
  179. return contexts
  180. if self.is_docs_site_instance:
  181. self.config.template = DOCS_SITE_PROMPT_TEMPLATE
  182. self.config.number_documents = 5
  183. k = {}
  184. if self.online:
  185. k["web_search_result"] = self.access_search_and_get_results(input_query)
  186. prompt = self.generate_prompt(input_query, contexts, **k)
  187. logging.info(f"Prompt: {prompt}")
  188. if dry_run:
  189. return prompt
  190. answer = self.get_answer_from_llm(prompt)
  191. if isinstance(answer, str):
  192. logging.info(f"Answer: {answer}")
  193. return answer
  194. else:
  195. return self._stream_query_response(answer)
  196. finally:
  197. if config:
  198. # Restore previous config
  199. self.config: BaseLlmConfig = BaseLlmConfig.deserialize(prev_config)
  200. def chat(self, input_query: str, contexts: List[str], config: BaseLlmConfig = None, dry_run=False):
  201. """
  202. Queries the vector database on the given input query.
  203. Gets relevant doc based on the query and then passes it to an
  204. LLM as context to get the answer.
  205. Maintains the whole conversation in memory.
  206. :param input_query: The query to use.
  207. :type input_query: str
  208. :param contexts: Embeddings retrieved from the database to be used as context.
  209. :type contexts: List[str]
  210. :param config: The `BaseLlmConfig` instance to use as configuration options. This is used for one method call.
  211. To persistently use a config, declare it during app init., defaults to None
  212. :type config: Optional[BaseLlmConfig], optional
  213. :param dry_run: A dry run does everything except send the resulting prompt to
  214. the LLM. The purpose is to test the prompt, not the response., defaults to False
  215. :type dry_run: bool, optional
  216. :return: The answer to the query or the dry run result
  217. :rtype: str
  218. """
  219. try:
  220. if config:
  221. # A config instance passed to this method will only be applied temporarily, for one call.
  222. # So we will save the previous config and restore it at the end of the execution.
  223. # For this we use the serializer.
  224. prev_config = self.config.serialize()
  225. self.config = config
  226. if self.is_docs_site_instance:
  227. self.config.template = DOCS_SITE_PROMPT_TEMPLATE
  228. self.config.number_documents = 5
  229. k = {}
  230. if self.online:
  231. k["web_search_result"] = self.access_search_and_get_results(input_query)
  232. prompt = self.generate_prompt(input_query, contexts, **k)
  233. logging.info(f"Prompt: {prompt}")
  234. if dry_run:
  235. return prompt
  236. answer = self.get_answer_from_llm(prompt)
  237. if isinstance(answer, str):
  238. logging.info(f"Answer: {answer}")
  239. return answer
  240. else:
  241. # this is a streamed response and needs to be handled differently.
  242. return self._stream_chat_response(answer)
  243. finally:
  244. if config:
  245. # Restore previous config
  246. self.config: BaseLlmConfig = BaseLlmConfig.deserialize(prev_config)
  247. @staticmethod
  248. def _get_messages(prompt: str, system_prompt: Optional[str] = None) -> List[LCBaseMessage]:
  249. """
  250. Construct a list of langchain messages
  251. :param prompt: User prompt
  252. :type prompt: str
  253. :param system_prompt: System prompt, defaults to None
  254. :type system_prompt: Optional[str], optional
  255. :return: List of messages
  256. :rtype: List[BaseMessage]
  257. """
  258. from langchain.schema import HumanMessage, SystemMessage
  259. messages = []
  260. if system_prompt:
  261. messages.append(SystemMessage(content=system_prompt))
  262. messages.append(HumanMessage(content=prompt))
  263. return messages