1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- import logging
- import os
- from typing import Any, Optional
- try:
- from langchain_anthropic import ChatAnthropic
- except ImportError:
- raise ImportError("Please install the langchain-anthropic package by running `pip install langchain-anthropic`.")
- from embedchain.config import BaseLlmConfig
- from embedchain.helpers.json_serializable import register_deserializable
- from embedchain.llm.base import BaseLlm
- logger = logging.getLogger(__name__)
- @register_deserializable
- class AnthropicLlm(BaseLlm):
- def __init__(self, config: Optional[BaseLlmConfig] = None):
- super().__init__(config=config)
- if not self.config.api_key and "ANTHROPIC_API_KEY" not in os.environ:
- raise ValueError("Please set the ANTHROPIC_API_KEY environment variable or pass it in the config.")
- def get_llm_model_answer(self, prompt) -> tuple[str, Optional[dict[str, Any]]]:
- if self.config.token_usage:
- response, token_info = self._get_answer(prompt, self.config)
- model_name = "anthropic/" + self.config.model
- if model_name not in self.config.model_pricing_map:
- raise ValueError(
- f"Model {model_name} not found in `model_prices_and_context_window.json`. \
- You can disable token usage by setting `token_usage` to False."
- )
- total_cost = (
- self.config.model_pricing_map[model_name]["input_cost_per_token"] * token_info["input_tokens"]
- ) + self.config.model_pricing_map[model_name]["output_cost_per_token"] * token_info["output_tokens"]
- response_token_info = {
- "prompt_tokens": token_info["input_tokens"],
- "completion_tokens": token_info["output_tokens"],
- "total_tokens": token_info["input_tokens"] + token_info["output_tokens"],
- "total_cost": round(total_cost, 10),
- "cost_currency": "USD",
- }
- return response, response_token_info
- return self._get_answer(prompt, self.config)
- @staticmethod
- def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
- api_key = config.api_key or os.getenv("ANTHROPIC_API_KEY")
- chat = ChatAnthropic(anthropic_api_key=api_key, temperature=config.temperature, model_name=config.model)
- if config.max_tokens and config.max_tokens != 1000:
- logger.warning("Config option `max_tokens` is not supported by this model.")
- messages = BaseLlm._get_messages(prompt, system_prompt=config.system_prompt)
- chat_response = chat.invoke(messages)
- if config.token_usage:
- return chat_response.content, chat_response.response_metadata["token_usage"]
- return chat_response.content
|