openai.py 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344
  1. from typing import Optional
  2. from langchain.chat_models import ChatOpenAI
  3. from langchain.schema import HumanMessage, SystemMessage
  4. from embedchain.config import BaseLlmConfig
  5. from embedchain.helper.json_serializable import register_deserializable
  6. from embedchain.llm.base import BaseLlm
  7. @register_deserializable
  8. class OpenAILlm(BaseLlm):
  9. def __init__(self, config: Optional[BaseLlmConfig] = None):
  10. super().__init__(config=config)
  11. def get_llm_model_answer(self, prompt):
  12. response = OpenAILlm._get_answer(prompt, self.config)
  13. if self.config.stream:
  14. return response
  15. else:
  16. return response.content
  17. def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
  18. messages = []
  19. if config.system_prompt:
  20. messages.append(SystemMessage(content=config.system_prompt))
  21. messages.append(HumanMessage(content=prompt))
  22. kwargs = {
  23. "model": config.model or "gpt-3.5-turbo-0613",
  24. "temperature": config.temperature,
  25. "max_tokens": config.max_tokens,
  26. "model_kwargs": {},
  27. }
  28. if config.top_p:
  29. kwargs["model_kwargs"]["top_p"] = config.top_p
  30. if config.stream:
  31. from langchain.callbacks.streaming_stdout import \
  32. StreamingStdOutCallbackHandler
  33. chat = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=[StreamingStdOutCallbackHandler()])
  34. else:
  35. chat = ChatOpenAI(**kwargs)
  36. return chat(messages)