12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- import json
- import os
- from typing import Any, Optional
- from langchain.chat_models import ChatOpenAI
- from langchain.schema import AIMessage, HumanMessage, SystemMessage
- from embedchain.config import BaseLlmConfig
- from embedchain.helpers.json_serializable import register_deserializable
- from embedchain.llm.base import BaseLlm
- @register_deserializable
- class OpenAILlm(BaseLlm):
- def __init__(self, config: Optional[BaseLlmConfig] = None, functions: Optional[dict[str, Any]] = None):
- self.functions = functions
- super().__init__(config=config)
- def get_llm_model_answer(self, prompt) -> str:
- response = self._get_answer(prompt, self.config)
- return response
- def _get_answer(self, prompt: str, config: BaseLlmConfig) -> str:
- messages = []
- if config.system_prompt:
- messages.append(SystemMessage(content=config.system_prompt))
- messages.append(HumanMessage(content=prompt))
- kwargs = {
- "model": config.model or "gpt-3.5-turbo",
- "temperature": config.temperature,
- "max_tokens": config.max_tokens,
- "model_kwargs": {},
- }
- api_key = config.api_key or os.environ["OPENAI_API_KEY"]
- if config.top_p:
- kwargs["model_kwargs"]["top_p"] = config.top_p
- if config.stream:
- from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
- callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()]
- llm = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=callbacks, api_key=api_key)
- else:
- llm = ChatOpenAI(**kwargs, api_key=api_key)
- if self.functions is not None:
- from langchain.chains.openai_functions import create_openai_fn_runnable
- from langchain.prompts import ChatPromptTemplate
- structured_prompt = ChatPromptTemplate.from_messages(messages)
- runnable = create_openai_fn_runnable(functions=self.functions, prompt=structured_prompt, llm=llm)
- fn_res = runnable.invoke(
- {
- "input": prompt,
- }
- )
- messages.append(AIMessage(content=json.dumps(fn_res)))
- return llm(messages).content
|