1234567891011121314151617181920212223242526272829303132333435363738394041424344 |
- from typing import Optional
- from langchain.chat_models import ChatOpenAI
- from langchain.schema import HumanMessage, SystemMessage
- from embedchain.config import BaseLlmConfig
- from embedchain.helper.json_serializable import register_deserializable
- from embedchain.llm.base import BaseLlm
- @register_deserializable
- class OpenAILlm(BaseLlm):
- def __init__(self, config: Optional[BaseLlmConfig] = None):
- super().__init__(config=config)
- def get_llm_model_answer(self, prompt):
- response = OpenAILlm._get_answer(prompt, self.config)
- if self.config.stream:
- return response
- else:
- return response.content
- def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
- messages = []
- if config.system_prompt:
- messages.append(SystemMessage(content=config.system_prompt))
- messages.append(HumanMessage(content=prompt))
- kwargs = {
- "model": config.model or "gpt-3.5-turbo-0613",
- "temperature": config.temperature,
- "max_tokens": config.max_tokens,
- "model_kwargs": {},
- }
- if config.top_p:
- kwargs["model_kwargs"]["top_p"] = config.top_p
- if config.stream:
- from langchain.callbacks.streaming_stdout import \
- StreamingStdOutCallbackHandler
- chat = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=[StreamingStdOutCallbackHandler()])
- else:
- chat = ChatOpenAI(**kwargs)
- return chat(messages)
|