123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- import logging
- from typing import Dict, List, Optional, Set
- try:
- from opensearchpy import OpenSearch
- from opensearchpy.helpers import bulk
- except ImportError:
- raise ImportError(
- "OpenSearch requires extra dependencies. Install with `pip install --upgrade embedchain[opensearch]`"
- ) from None
- from langchain.embeddings.openai import OpenAIEmbeddings
- from langchain.vectorstores import OpenSearchVectorSearch
- from embedchain.config import OpenSearchDBConfig
- from embedchain.helper.json_serializable import register_deserializable
- from embedchain.vectordb.base import BaseVectorDB
- @register_deserializable
- class OpenSearchDB(BaseVectorDB):
- """
- OpenSearch as vector database
- """
- def __init__(self, config: OpenSearchDBConfig):
- """OpenSearch as vector database.
- :param config: OpenSearch domain config
- :type config: OpenSearchDBConfig
- """
- if config is None:
- raise ValueError("OpenSearchDBConfig is required")
- self.config = config
- self.client = OpenSearch(
- hosts=[self.config.opensearch_url],
- http_auth=self.config.http_auth,
- **self.config.extra_params,
- )
- info = self.client.info()
- logging.info(f"Connected to {info['version']['distribution']}. Version: {info['version']['number']}")
- # Remove auth credentials from config after successful connection
- super().__init__(config=self.config)
- def _initialize(self):
- logging.info(self.client.info())
- index_name = self._get_index()
- if self.client.indices.exists(index=index_name):
- print(f"Index '{index_name}' already exists.")
- return
- index_body = {
- "settings": {"knn": True},
- "mappings": {
- "properties": {
- "text": {"type": "text"},
- "embeddings": {
- "type": "knn_vector",
- "index": False,
- "dimension": self.config.vector_dimension,
- },
- }
- },
- }
- self.client.indices.create(index_name, body=index_body)
- print(self.client.indices.get(index_name))
- def _get_or_create_db(self):
- """Called during initialization"""
- return self.client
- def _get_or_create_collection(self, name):
- """Note: nothing to return here. Discuss later"""
- def get(
- self, ids: Optional[List[str]] = None, where: Optional[Dict[str, any]] = None, limit: Optional[int] = None
- ) -> Set[str]:
- """
- Get existing doc ids present in vector database
- :param ids: _list of doc ids to check for existence
- :type ids: List[str]
- :param where: to filter data
- :type where: Dict[str, any]
- :return: ids
- :type: Set[str]
- """
- if ids:
- query = {"query": {"bool": {"must": [{"ids": {"values": ids}}]}}}
- else:
- query = {"query": {"bool": {"must": []}}}
- if "app_id" in where:
- app_id = where["app_id"]
- query["query"]["bool"]["must"].append({"term": {"metadata.app_id": app_id}})
- # OpenSearch syntax is different from Elasticsearch
- response = self.client.search(index=self._get_index(), body=query, _source=False, size=limit)
- docs = response["hits"]["hits"]
- ids = [doc["_id"] for doc in docs]
- return {"ids": set(ids)}
- def add(self, documents: List[str], metadatas: List[object], ids: List[str]):
- """add data in vector database
- :param documents: list of texts to add
- :type documents: List[str]
- :param metadatas: list of metadata associated with docs
- :type metadatas: List[object]
- :param ids: ids of docs
- :type ids: List[str]
- """
- docs = []
- embeddings = self.embedder.embedding_fn(documents)
- for id, text, metadata, embeddings in zip(ids, documents, metadatas, embeddings):
- docs.append(
- {
- "_index": self._get_index(),
- "_id": id,
- "_source": {"text": text, "metadata": metadata, "embeddings": embeddings},
- }
- )
- bulk(self.client, docs)
- self.client.indices.refresh(index=self._get_index())
- def query(self, input_query: List[str], n_results: int, where: Dict[str, any]) -> List[str]:
- """
- query contents from vector data base based on vector similarity
- :param input_query: list of query string
- :type input_query: List[str]
- :param n_results: no of similar documents to fetch from database
- :type n_results: int
- :param where: Optional. to filter data
- :type where: Dict[str, any]
- :return: Database contents that are the result of the query
- :rtype: List[str]
- """
- embeddings = OpenAIEmbeddings()
- docsearch = OpenSearchVectorSearch(
- index_name=self._get_index(),
- embedding_function=embeddings,
- opensearch_url=f"{self.config.opensearch_url}",
- http_auth=self.config.http_auth,
- use_ssl=True,
- )
- docs = docsearch.similarity_search(
- input_query,
- search_type="script_scoring",
- space_type="cosinesimil",
- vector_field="embeddings",
- text_field="text",
- metadata_field="metadata",
- )
- contents = [doc.page_content for doc in docs]
- return contents
- def set_collection_name(self, name: str):
- """
- Set the name of the collection. A collection is an isolated space for vectors.
- :param name: Name of the collection.
- :type name: str
- """
- if not isinstance(name, str):
- raise TypeError("Collection name must be a string")
- self.config.collection_name = name
- def count(self) -> int:
- """
- Count number of documents/chunks embedded in the database.
- :return: number of documents
- :rtype: int
- """
- query = {"query": {"match_all": {}}}
- response = self.client.count(index=self._get_index(), body=query)
- doc_count = response["count"]
- return doc_count
- def reset(self):
- """
- Resets the database. Deletes all embeddings irreversibly.
- """
- # Delete all data from the database
- if self.client.indices.exists(index=self._get_index()):
- # delete index in Es
- self.client.indices.delete(index=self._get_index())
- def _get_index(self) -> str:
- """Get the OpenSearch index for a collection
- :return: OpenSearch index
- :rtype: str
- """
- return self.config.collection_name
|